We study the complexity of problems solvable in deterministic polynomial time with access to an NP or Quantum Merlin-Arthur (QMA)-oracle, such as P^NP and P^QMA, respectively. The former allows one to classify problems more finely than the Polynomial-Time Hierarchy (PH), whereas the latter characterizes physically motivated problems such as Approximate Simulation (APX-SIM) [Ambainis, CCC 2014]. In this area, a central role has been played by the classes P^NP[log] and P^QMA[log], defined identically to P^NP and P^QMA, except that only logarithmically many oracle queries are allowed. Here, [Gottlob, FOCS 1993] showed that if the adaptive queries made by a P^NP machine have a "query graph" which is a tree, then this computation can be simulated in P^NP[log]. In this work, we first show that for any verification class C ∈ {NP, MA, QCMA, QMA, QMA(2), NEXP, QMA_exp}, any P^C machine with a query graph of "separator number" s can be simulated using deterministic time exp(slog n) and slog n queries to a C-oracle. When s ∈ O(1) (which includes the case of O(1)-treewidth, and thus also of trees), this gives an upper bound of P^C[log], and when s ∈ O(log^k(n)), this yields bound QP^{C[log^{k+1}]} (QP meaning quasi-polynomial time). We next show how to combine Gottlob’s "admissible-weighting function" framework with the "flag-qubit" framework of [Watson, Bausch, Gharibian, 2020], obtaining a unified approach for embedding P^C computations directly into APX-SIM instances in a black-box fashion. Finally, we formalize a simple no-go statement about polynomials (c.f. [Krentel, STOC 1986]): Given a multi-linear polynomial p specified via an arithmetic circuit, if one can "weakly compress" p so that its optimal value requires m bits to represent, then P^NP can be decided with only m queries to an NP-oracle.
@InProceedings{gharibian_et_al:LIPIcs.ITCS.2022.75, author = {Gharibian, Sevag and Rudolph, Dorian}, title = {{On Polynomially Many Queries to NP or QMA Oracles}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {75:1--75:27}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.75}, URN = {urn:nbn:de:0030-drops-156717}, doi = {10.4230/LIPIcs.ITCS.2022.75}, annote = {Keywords: admissible weighting function, oracle complexity class, quantum complexity theory, Quantum Merlin Arthur (QMA), simulation of local measurement} }
Feedback for Dagstuhl Publishing