Blockchain technology has the potential of transforming cryptography. We study the problem of round-complexity of zero-knowledge, and more broadly, of secure computation in the blockchain-hybrid model, where all parties can access the blockchain as an oracle. We study zero-knowledge and secure computation through the lens of a new security notion where the simulator is given the ability to "time-travel” or more accurately, to look into the future states of the blockchain and use this information to perform simulation. Such a time-traveling simulator gives a novel security guarantee of the following form: whatever the adversary could have learnt from an interaction, it could have computed on its own shortly into the future (e.g., a few hours from now). We exhibit the power of time-traveling simulators by constructing round-efficient protocols in the blockchain-hybrid model. In particular, we construct: 1) Three-round zero-knowledge (ZK) argument for NP with a polynomial-time black-box time-traveling simulator. 2) Three-round secure two-party computation (2PC) for any functionality with a polynomial-time black-box time-traveling simulator for both parties. In addition to standard cryptographic assumptions, we rely on natural hardness assumptions for Proof-of-Work based blockchains. In comparison, in the plain model, three-round protocols with black-box simulation are impossible, and constructions with non-black-box simulation for ZK require novel cryptographic assumptions while no construction for three-round 2PC is known. Our three-round 2PC result relies on a new, two-round extractable commitment that admits a time-traveling extractor.
@InProceedings{goyal_et_al:LIPIcs.ITCS.2022.81, author = {Goyal, Vipul and Raizes, Justin and Soni, Pratik}, title = {{Time-Traveling Simulators Using Blockchains and Their Applications}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {81:1--81:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.81}, URN = {urn:nbn:de:0030-drops-156770}, doi = {10.4230/LIPIcs.ITCS.2022.81}, annote = {Keywords: Cryptography, Zero Knowledge, Secure Two-Party Computation, Blockchain} }
Feedback for Dagstuhl Publishing