LIPIcs.ITCS.2023.58.pdf
- Filesize: 0.96 MB
- 23 pages
The edit distance between strings classically assigns unit cost to every character insertion, deletion, and substitution, whereas the Hamming distance only allows substitutions. In many real-life scenarios, insertions and deletions (abbreviated indels) appear frequently but significantly less so than substitutions. To model this, we consider substitutions being cheaper than indels, with cost 1/a for a parameter a ≥ 1. This basic variant, denoted ED_a, bridges classical edit distance (a = 1) with Hamming distance (a → ∞), leading to interesting algorithmic challenges: Does the time complexity of computing ED_a interpolate between that of Hamming distance (linear time) and edit distance (quadratic time)? What about approximating ED_a? We first present a simple deterministic exact algorithm for ED_a and further prove that it is near-optimal assuming the Orthogonal Vectors Conjecture. Our main result is a randomized algorithm computing a (1+ε)-approximation of ED_a(X,Y), given strings X,Y of total length n and a bound k ≥ ED_a(X,Y). For simplicity, let us focus on k ≥ 1 and a constant ε > 0; then, our algorithm takes Õ(n/a + ak³) time. Unless a = Õ(1), in which case ED_a resembles the standard edit distance, and for the most interesting regime of small enough k, this running time is sublinear in n. We also consider a very natural version that asks to find a (k_I, k_S)-alignment, i.e., an alignment with at most k_I indels and k_S substitutions. In this setting, we give an exact algorithm and, more importantly, an Õ((nk_I)/k_S + k_S k_I³)-time (1,1+ε)-bicriteria approximation algorithm. The latter solution is based on the techniques we develop for ED_a for a = Θ(k_S/k_I), and its running time is again sublinear in n whenever k_I ≪ k_S and the overall distance is small enough. These bounds are in stark contrast to unit-cost edit distance, where state-of-the-art algorithms are far from achieving (1+ε)-approximation in sublinear time, even for a favorable choice of k.
Feedback for Dagstuhl Publishing