We study the formula complexity of the word problem Word_{S_n,k} : {0,1}^{kn²} → {0,1}: given n-by-n permutation matrices M₁,… ,M_k, compute the (1,1)-entry of the matrix product M₁⋯ M_k. An important feature of this function is that it is invariant under action of S_n^{k-1} given by (π₁,… ,π_{k-1})(M₁,… ,M_k) = (M₁π₁^{-1},π₁M₂π₂^{-1},… ,π_{k-2}M_{k-1}π_{k-1}^{-1},π_{k-1}M_k). This symmetry is also exhibited in the smallest known unbounded fan-in {and,or,not}-formulas for Word_{S_n,k}, which have size n^O(log k). In this paper we prove a matching n^{Ω(log k)} lower bound for S_n^{k-1}-invariant formulas computing Word_{S_n,k}. This result is motivated by the fact that a similar lower bound for unrestricted (non-invariant) formulas would separate complexity classes NC¹ and Logspace. Our more general main theorem gives a nearly tight n^d(k^{1/d}-1) lower bound on the G^{k-1}-invariant depth-d {maj,and,or,not}-formula size of Word_{G,k} for any finite simple group G whose minimum permutation representation has degree n. We also give nearly tight lower bounds on the G^{k-1}-invariant depth-d {and,or,not}-formula size in the case where G is an abelian group.
@InProceedings{he_et_al:LIPIcs.ITCS.2023.68, author = {He, William and Rossman, Benjamin}, title = {{Symmetric Formulas for Products of Permutations}}, booktitle = {14th Innovations in Theoretical Computer Science Conference (ITCS 2023)}, pages = {68:1--68:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-263-1}, ISSN = {1868-8969}, year = {2023}, volume = {251}, editor = {Tauman Kalai, Yael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.68}, URN = {urn:nbn:de:0030-drops-175717}, doi = {10.4230/LIPIcs.ITCS.2023.68}, annote = {Keywords: circuit complexity, group-invariant formulas} }
Feedback for Dagstuhl Publishing