Simple and Optimal Online Contention Resolution Schemes for k-Uniform Matroids

Authors Atanas Dinev, S. Matthew Weinberg



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2024.39.pdf
  • Filesize: 0.76 MB
  • 23 pages

Document Identifiers

Author Details

Atanas Dinev
  • Massachusetts Institute of Technology, Cambridge, MA, USA
S. Matthew Weinberg
  • Princeton University, NJ, USA

Cite AsGet BibTex

Atanas Dinev and S. Matthew Weinberg. Simple and Optimal Online Contention Resolution Schemes for k-Uniform Matroids. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 39:1-39:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ITCS.2024.39

Abstract

We provide a simple (1-O(1/(√{k)}))-selectable Online Contention Resolution Scheme for k-uniform matroids against a fixed-order adversary. If A_i and G_i denote the set of selected elements and the set of realized active elements among the first i (respectively), our algorithm selects with probability 1-1/(√{k)} any active element i such that |A_{i-1}| + 1 ≤ (1-1/(√{k)})⋅ 𝔼[|G_i|]+√k. This implies a (1-O(1/(√{k)})) prophet inequality against fixed-order adversaries for k-uniform matroids that is considerably simpler than previous algorithms [Alaei, 2014; Azar et al., 2014; Jiang et al., 2022]. We also prove that no OCRS can be (1-Ω(√{(log k)/k}))-selectable for k-uniform matroids against an almighty adversary. This guarantee is matched by the (known) simple greedy algorithm that selects every active element with probability 1-Θ(√{(log k)/k}) [Hajiaghayi et al., 2007].

Subject Classification

ACM Subject Classification
  • Theory of computation → Online algorithms
Keywords
  • online contention resolutions schemes
  • prophet inequalities
  • online algorithms
  • approximation algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Marek Adamczyk and Michal Wlodarczyk. Random order contention resolution schemes. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 790-801, 2018. URL: https://doi.org/10.1109/FOCS.2018.00080.
  2. Saeed Alaei. Bayesian combinatorial auctions: Expanding single buyer mechanisms to many buyers. SIAM Journal on Computing, 43(2):930-972, 2014. URL: https://doi.org/10.1137/120878422.
  3. Nima Anari, Rad Niazadeh, Amin Saberi, and Ali Shameli. Nearly optimal pricing algorithms for production constrained and laminar bayesian selection. In Proceedings of the 2019 ACM Conference on Economics and Computation, EC 2019, Phoenix, AZ, USA, June 24-28, 2019., pages 91-92, 2019. URL: https://doi.org/10.1145/3328526.3329652.
  4. Pablo D Azar, Robert Kleinberg, and S Matthew Weinberg. Prophet inequalities with limited information. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 1358-1377. SIAM, 2014. Google Scholar
  5. Constantine Caramanis, Paul Dütting, Matthew Faw, Federico Fusco, Philip Lazos, Stefano Leonardi, Orestis Papadigenopoulos, Emmanouil Pountourakis, and Rebecca Reiffenhäuser. Single-sample prophet inequalities via greedy-ordered selection. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1298-1325, 2022. URL: https://doi.org/10.1137/1.9781611977073.54.
  6. Shuchi Chawla, Nikhil Devanur, and Thodoris Lykouris. Static pricing for multi-unit prophet inequalities. arXiv preprint arXiv:2007.07990, 2020. Google Scholar
  7. Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. Multi-Parameter Mechanism Design and Sequential Posted Pricing. In the 42nd ACM Symposium on Theory of Computing (STOC), 2010. Google Scholar
  8. Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM Journal on Computing, 43(6):1831-1879, 2014. Google Scholar
  9. José R. Correa, Andrés Cristi, Andrés Fielbaum, Tristan Pollner, and S. Matthew Weinberg. Optimal item pricing in online combinatorial auctions. In Karen Aardal and Laura Sanità, editors, Integer Programming and Combinatorial Optimization - 23rd International Conference, IPCO 2022, Eindhoven, The Netherlands, June 27-29, 2022, Proceedings, volume 13265 of Lecture Notes in Computer Science, pages 126-139. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-06901-7_10.
  10. Atanas Dinev and S Matthew Weinberg. Simple and optimal online contention resolution schemes for k-uniform matroids. arXiv preprint arXiv:2309.10078, 2023. Google Scholar
  11. Paul Duetting, Michal Feldman, Thomas Kesselheim, and Brendan Lucier. Prophet inequalities made easy: Stochastic optimization by pricing non-stochastic inputs. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 540-551, 2017. URL: https://doi.org/10.1109/FOCS.2017.56.
  12. Paul Dütting and Robert Kleinberg. Polymatroid prophet inequalities. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages 437-449. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-48350-3_37.
  13. Tomer Ezra, Michal Feldman, Nick Gravin, and Zhihao Gavin Tang. Online stochastic max-weight matching: Prophet inequality for vertex and edge arrival models. In Péter Biró, Jason D. Hartline, Michael Ostrovsky, and Ariel D. Procaccia, editors, EC '20: The 21st ACM Conference on Economics and Computation, Virtual Event, Hungary, July 13-17, 2020, pages 769-787. ACM, 2020. URL: https://doi.org/10.1145/3391403.3399513.
  14. Moran Feldman, Ola Svensson, and Rico Zenklusen. Online contention resolution schemes. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages 1014-1033. SIAM, 2016. Google Scholar
  15. Oliver Göbel, Martin Hoefer, Thomas Kesselheim, Thomas Schleiden, and Berthold Vöcking. Online independent set beyond the worst-case: Secretaries, prophets, and periods. In Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, pages 508-519, 2014. URL: https://doi.org/10.1007/978-3-662-43951-7_43.
  16. Nikolai Gravin and Hongao Wang. Prophet inequality for bipartite matching: Merits of being simple and non adaptive. In Proceedings of the 2019 ACM Conference on Economics and Computation, EC 2019, Phoenix, AZ, USA, June 24-28, 2019., pages 93-109, 2019. URL: https://doi.org/10.1145/3328526.3329604.
  17. Mohammad Taghi Hajiaghayi, Robert Kleinberg, and Tuomas Sandholm. Automated online mechanism design and prophet inequalities. In AAAI, volume 7, pages 58-65, 2007. Google Scholar
  18. Jiashuo Jiang, Will Ma, and Jiawei Zhang. Tight guarantees for multi-unit prophet inequalities and online stochastic knapsack. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1221-1246. SIAM, 2022. Google Scholar
  19. Jiashuo Jiang, Will Ma, and Jiawei Zhang. Tightness without counterexamples: A new approach and new results for prophet inequalities. In Proceedings of the 24th ACM Conference on Economics and Computation, EC '23, page 909, New York, NY, USA, 2023. Association for Computing Machinery. URL: https://doi.org/10.1145/3580507.3597734.
  20. Danish Kashaev and Richard Santiago. A simple optimal contention resolution scheme for uniform matroids. Theoretical Computer Science, 940:81-96, 2023. Google Scholar
  21. Robert Kleinberg and S. Matthew Weinberg. Matroid prophet inequalities. In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 123-136, 2012. URL: https://doi.org/10.1145/2213977.2213991.
  22. Ulrich Krengel and Louis Sucheston. On semiamarts, amarts, and processes with finite value. Advances in Probability and Related Topics, 4:197-266, 1978. Google Scholar
  23. Euiwoong Lee and Sahil Singla. Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, 26th Annual European Symposium on Algorithms (ESA 2018), volume 112 of Leibniz International Proceedings in Informatics (LIPIcs), pages 57:1-57:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.ESA.2018.57.
  24. Calum MacRury, Will Ma, and Nathaniel Grammel. On (random-order) online contention resolution schemes for the matching polytope of (bipartite) graphs. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1995-2014. SIAM, 2023. Google Scholar
  25. Aviad Rubinstein. Beyond matroids: secretary problem and prophet inequality with general constraints. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 324-332, 2016. URL: https://doi.org/10.1145/2897518.2897540.
  26. Aviad Rubinstein and Sahil Singla. Combinatorial prophet inequalities. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1671-1687, 2017. URL: https://doi.org/10.1137/1.9781611974782.110.
  27. Ester Samuel-Cahn. Comparison of threshold stop rules and maximum for independent nonnegative random variables. Annals of Probability, 12(4):1213-1216, 1984. Google Scholar
  28. Richard Santiago, Ivan Sergeev, and Rico Zenklusen. Simple random order contention resolution for graphic matroids with almost no prior information. In Symposium on Simplicity in Algorithms (SOSA), pages 84-95. SIAM, 2023. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail