Formalization of the Domination Chain with Weighted Parameters (Short Paper)

Author Daniel E. Severín



PDF
Thumbnail PDF

File

LIPIcs.ITP.2019.36.pdf
  • Filesize: 394 kB
  • 7 pages

Document Identifiers

Author Details

Daniel E. Severín
  • Depto. de Matemática, Universidad Nacional de Rosario, Argentina
  • CONICET, Argentina

Acknowledgements

I want to thank Ricardo Katz for his careful reading and suggestions.

Cite AsGet BibTex

Daniel E. Severín. Formalization of the Domination Chain with Weighted Parameters (Short Paper). In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 36:1-36:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.ITP.2019.36

Abstract

The Cockayne-Hedetniemi Domination Chain is a chain of inequalities between classic parameters of graph theory: for a given graph G, ir(G) <= gamma(G) <= iota(G) <= alpha(G) <= Gamma(G) <= IR(G). These parameters return the maximum/minimum cardinality of a set satisfying some property. However, they can be generalized for graphs with weighted vertices where the objective is to maximize/minimize the sum of weights of a set satisfying the same property, and the domination chain still holds for them. In this work, the definition of these parameters as well as the chain is formalized in Coq/Ssreflect.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
Keywords
  • Domination Chain
  • Coq
  • Formalization of Mathematics

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. X. Allamigeon and R. Katz. A Formalization of Convex Polyhedra Based on the Simplex Method. J. Autom. Reasoning, pages 1-23, 2018. URL: https://doi.org/10.1007/s10817-018-9477-1.
  2. C. Bazgan, L. Brankovic, K. Casel, H. Fernau, K. Jansen, K.-M. Klein, M. Lampis, M. Liedloff, J. Monnot, and V. Th. Paschos. The many facets of upper domination. Theor. Comput. Sci., 717:2-25, 2018. URL: https://doi.org/10.1016/j.tcs.2017.05.042.
  3. A. Boyaci and J. Monnot. Weighted upper domination number. Electron. Notes Discrete Math., 62:171-176, 2017. URL: https://doi.org/10.1016/j.endm.2017.10.030.
  4. P. P. Davidson, C. Blum, and J. Lozano. The weighted independent domination problem: Integer linear programming models and metaheuristic approaches. Eur. J. Oper. Res., 265:860-871, 2018. URL: https://doi.org/10.1016/j.ejor.2017.08.044.
  5. C. Doczkal, G. Combette, and D. Pous. A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs. Lect. Notes Comput. Sc., 10895:178-195, 2018. URL: https://doi.org/10.1007/978-3-319-94821-8_11.
  6. O. Favaron, T. Haynes, S. Hedetniemi, M. Henning, and D. Knisley. Total irredundance in graphs. Discrete Math., 256:115-127, 2002. URL: https://doi.org/10.1016/S0012-365X(00)00459-3.
  7. G. Gonthier. Formal proof - the Four-Color Theorem. Notices Amer. Math. Soc., 55:1382-1393, 2008. URL: http://www.ams.org/notices/200811/tx081101382p.pdf.
  8. G. Gonthier and A. Mahboubi. An introduction to small scale reflection in Coq. J. Form. Reason., 3:95-152, 2010. URL: https://doi.org/10.6092/issn.1972-5787/1979.
  9. T. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, Inc., 1998. Google Scholar
  10. M. Jacobson and K. Peters. Chordal graphs and upper irredundance, upper domination and independence. Discrete Math., 86:59-69, 1990. URL: https://doi.org/10.1016/0012-365X(90)90349-M.
  11. L. Noschinski. Proof Pearl: A Probabilistic Proof for the Girth-Chromatic Number Theorem. Lect. Notes Comput. Sc., 7406:393-404, 2012. URL: https://doi.org/10.1007/978-3-642-32347-8_27.
  12. D. Severín and G. Nasini. The Maximum Weighted Upper Irredundance Problem (in Spanish). In Communications of the Unión Matemática Argentina. UNLP, La Plata, September 2018. Google Scholar
  13. The Mathematical Components team. Mathematical components, 2018. URL: http://math-comp.github.io/math-comp/.