On Planar Valued CSPs

Authors Peter Fulla, Stanislav Zivny



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2016.39.pdf
  • Filesize: 0.49 MB
  • 14 pages

Document Identifiers

Author Details

Peter Fulla
Stanislav Zivny

Cite AsGet BibTex

Peter Fulla and Stanislav Zivny. On Planar Valued CSPs. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 39:1-39:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.MFCS.2016.39

Abstract

We study the computational complexity of planar valued constraint satisfaction problems (VCSPs). First, we show that intractable Boolean VCSPs have to be self-complementary to be tractable in the planar setting, thus extending a corresponding result of Dvorak and Kupec [ICALP'15] from CSPs to VCSPs. Second, we give a complete complexity classification of conservative planar VCSPs on arbitrary finite domains. As it turns out, in this case planarity does not lead to any new tractable cases, and thus our classification is a sharpening of the classification of conservative VCSPs by Kolmogorov and Zivny [JACM'13].
Keywords
  • constraint satisfaction
  • valued constraint satisfaction
  • planarity
  • polymorphisms
  • multimorphisms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads