Monitor Logics for Quantitative Monitor Automata

Author Erik Paul

Thumbnail PDF


  • Filesize: 484 kB
  • 13 pages

Document Identifiers

Author Details

Erik Paul

Cite AsGet BibTex

Erik Paul. Monitor Logics for Quantitative Monitor Automata. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 14:1-14:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


We introduce a new logic called Monitor Logic and show that it is expressively equivalent to Quantitative Monitor Automata.
  • Quantitative Monitor Automata
  • Nested Weighted Automata
  • Monitor Logics
  • Weighted Logics


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. J. Richard Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik und Grundl. Math., 6:66-92, 1960. Google Scholar
  2. Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages. In Michael Kaminski and Simone Martini, editors, Proc. CSL, volume 5213 of LNCS, pages 385-400. Springer, 2008. Google Scholar
  3. Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Nested weighted automata. In Proc. LICS, pages 725-737, 2015. Google Scholar
  4. Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative monitor automata. In Xavier Rival, editor, Proc. SAS, volume 9837 of LNCS. Springer, 2016. Google Scholar
  5. Manfred Droste and Stefan Dück. Weighted automata and logics on graphs. In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald T. Sannella, editors, Proc. MFCS, volume 9234 of LNCS, pages 192-204. Springer, 2015. Google Scholar
  6. Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theor. Comput. Sci., 380:69-86, 2007. Google Scholar
  7. Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata. Monogr. Theoret. Comput. Sci. EATCS Ser. Springer, 2009. Google Scholar
  8. Manfred Droste and Ingmar Meinecke. Weighted automata and weighted MSO logics for average and long-time behaviors. Inform. Comput., 220–221:44-59, 2012. Google Scholar
  9. Manfred Droste and George Rahonis. Weighted automata and weighted logics on infinite words. In Proc. DLT, volume 4036 of LNCS, pages 49-58. Springer, 2006. Google Scholar
  10. Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc., 98(1):21-51, 1961. Google Scholar
  11. Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of ω-regular languages I. Journal of Automata, Languages and Combinatorics, 10(2/3):203-242, 2005. Google Scholar
  12. Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of ω-regular languages II. Journal of Automata, Languages and Combinatorics, 10(2/3):243-264, 2005. Google Scholar
  13. Ina Fichtner. Weighted picture automata and weighted logics. Theor. Comput. Syst., 48(1):48-78, 2011. Google Scholar
  14. Christian Mathissen. Weighted logics for nested words and algebraic formal power series. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Proc. ICALP, volume 5126 of LNCS, pages 221-232. Springer, 2008. Google Scholar
  15. Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science (Vol. B), pages 133-191. Elsevier Science, 1990. Google Scholar
  16. Wolfgang Thomas. Languages, automata, and logic. In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages (Vol. 3), pages 389-455. Springer, 1997. Google Scholar
  17. Boris Avraamovich Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady Akademii Nauk SSSR, 140:326-329, 1961. In Russian. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail