Document

# Computing the Maximum using (min, +) Formulas

## File

LIPIcs.MFCS.2017.74.pdf
• Filesize: 391 kB
• 11 pages

## Cite As

Meena Mahajan, Prajakta Nimbhorkar, and Anuj Tawari. Computing the Maximum using (min, +) Formulas. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 74:1-74:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.MFCS.2017.74

## Abstract

We study computation by formulas over (min,+). We consider the computation of max{x_1,...,x_n} over N as a difference of (min,+) formulas, and show that size n + n \log n is sufficient and necessary. Our proof also shows that any (min,+) formula computing the minimum of all sums of n-1 out of n variables must have n \log n leaves; this too is tight. Our proofs use a complexity measure for (min,+) functions based on minterm-like behaviour and on the entropy of an associated graph.
##### Keywords
• Formulas
• Circuits
• Lower bounds
• Tropical semiring

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Eric Allender. Arithmetic circuits and counting complexity classes. In Jan Krajicek, editor, Complexity of Computations and Proofs, Quaderni di Matematica Vol. 13, pages 33-72. Seconda Universita di Napoli, 2004. An earlier version appeared in the Complexity Theory Column, SIGACT News 28, 4 (Dec. 1997) pp. 2-15.
2. Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87-90, 1956.
3. Imre Csiszár, János Körner, László Lovász, Katalin Marton, and Gábor Simonyi. Entropy splitting for antiblocking corners and perfect graphs. Combinatorica, 10(1):27-40, 1990.
4. Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.
5. Lester R Ford Jr. Network flow theory. Technical Report P-923, Rand Corporation, 1956.
6. Michael Held and Richard M Karp. A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied Mathematics, 10(1):196-210, 1962.
7. Mark Jerrum and Marc Snir. Some exact complexity results for straight-line computations over semirings. Journal of the ACM (JACM), 29(3):874-897, 1982.
8. Stasys Jukna. Lower bounds for tropical circuits and dynamic programs. Theory of Computing Systems, 57(1):160-194, 2015.
9. Stasys Jukna. Tropical complexity, Sidon sets, and dynamic programming. SIAM Journal on Discrete Mathematics, 30(4):2064-2085, 2016.
10. Stasys Jukna and Georg Schnitger. On the optimality of Bellman-Ford-Moore shortest path algorithm. Theoretical Computer Science, 628:101-109, 2016.
11. János Körner. Coding of an information source having ambiguous alphabet and the entropy of graphs. In Transactions of 6th Prague Conference on Information Theory, pages 411-425. Academia, Prague, 1973.
12. János Körner. Fredman-Komlós bounds and information theory. SIAM. J. on Algebraic and Discrete Methods, 7(4):560-570, 1986.
13. János Körner and Katalin Marton. New bounds for perfect hashing via information theory. European Journal of Combinatorics, 9(6):523-530, 1988.
14. Edward F Moore. The shortest path through a maze. Bell Telephone System., 1959.
15. Ilan Newman and Avi Wigderson. Lower bounds on formula size of boolean functions using hypergraph entropy. SIAM Journal on Discrete Mathematics, 8(4):536-542, 1995.
16. Gábor Simonyi. Graph entropy: A survey. Combinatorial Optimization, 20:399-441, 1995.
17. Gábor Simonyi. Perfect graphs and graph entropy: An updated survey. In Perfect Graphs, pages 293-328. John Wiley and Sons, 2001.
18. Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM (JACM), 9(1):11-12, 1962.
X

Feedback for Dagstuhl Publishing