LIPIcs.MFCS.2018.15.pdf
- Filesize: 411 kB
- 15 pages
We study the space complexity of sliding window streaming algorithms that check membership of the window content in a fixed context-free language. For regular languages, this complexity is either constant, logarithmic or linear [Moses Ganardi et al., 2016]. We prove that every context-free language whose sliding window space complexity is log_2(n) - omega(1) must be regular and has constant space complexity. Moreover, for every c in N, c >= 1 we construct a (nondeterministic) context-free language whose sliding window space complexity is O(n^(1/c)) \ o(n^(1/c)). Finally, we give an example of a deterministic one-counter language whose sliding window space complexity is Theta((log n)^2).
Feedback for Dagstuhl Publishing