The square of a graph H, denoted H^2, is obtained from H by adding new edges between two distinct vertices whenever their distance in H is two. The half-squares of a bipartite graph B=(X,Y,E_B) are the subgraphs of B^2 induced by the color classes X and Y, B^2[X] and B^2[Y]. For a given graph G=(V,E_G), if G=B^2[V] for some bipartite graph B=(V,W,E_B), then B is a representation of G and W is the set of points in B. If in addition B is planar, then G is also called a map graph and B is a witness of G [Chen, Grigni, Papadimitriou. Map graphs. J. ACM , 49 (2) (2002) 127-138]. While Chen, Grigni, Papadimitriou proved that any map graph G=(V,E_G) has a witness with at most 3|V|-6 points, we show that, given a map graph G and an integer k, deciding if G admits a witness with at most k points is NP-complete. As a by-product, we obtain NP-completeness of edge clique partition on planar graphs; until this present paper, the complexity status of edge clique partition for planar graphs was previously unknown. We also consider half-squares of tree-convex bipartite graphs and prove the following complexity dichotomy: Given a graph G=(V,E_G) and an integer k, deciding if G=B^2[V] for some tree-convex bipartite graph B=(V,W,E_B) with |W|<=k points is NP-complete if G is non-chordal dually chordal and solvable in linear time otherwise. Our proof relies on a characterization of half-squares of tree-convex bipartite graphs, saying that these are precisely the chordal and dually chordal graphs.
@InProceedings{le_et_al:LIPIcs.MFCS.2019.13, author = {Le, Hoang-Oanh and Le, Van Bang}, title = {{Constrained Representations of Map Graphs and Half-Squares}}, booktitle = {44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)}, pages = {13:1--13:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-117-7}, ISSN = {1868-8969}, year = {2019}, volume = {138}, editor = {Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.13}, URN = {urn:nbn:de:0030-drops-109574}, doi = {10.4230/LIPIcs.MFCS.2019.13}, annote = {Keywords: map graph, half-square, edge clique cover, edge clique partition, graph classes} }
Feedback for Dagstuhl Publishing