Document

# Constrained Representations of Map Graphs and Half-Squares

## File

LIPIcs.MFCS.2019.13.pdf
• Filesize: 0.51 MB
• 15 pages

## Cite As

Hoang-Oanh Le and Van Bang Le. Constrained Representations of Map Graphs and Half-Squares. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 13:1-13:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.MFCS.2019.13

## Abstract

The square of a graph H, denoted H^2, is obtained from H by adding new edges between two distinct vertices whenever their distance in H is two. The half-squares of a bipartite graph B=(X,Y,E_B) are the subgraphs of B^2 induced by the color classes X and Y, B^2[X] and B^2[Y]. For a given graph G=(V,E_G), if G=B^2[V] for some bipartite graph B=(V,W,E_B), then B is a representation of G and W is the set of points in B. If in addition B is planar, then G is also called a map graph and B is a witness of G [Chen, Grigni, Papadimitriou. Map graphs. J. ACM , 49 (2) (2002) 127-138]. While Chen, Grigni, Papadimitriou proved that any map graph G=(V,E_G) has a witness with at most 3|V|-6 points, we show that, given a map graph G and an integer k, deciding if G admits a witness with at most k points is NP-complete. As a by-product, we obtain NP-completeness of edge clique partition on planar graphs; until this present paper, the complexity status of edge clique partition for planar graphs was previously unknown. We also consider half-squares of tree-convex bipartite graphs and prove the following complexity dichotomy: Given a graph G=(V,E_G) and an integer k, deciding if G=B^2[V] for some tree-convex bipartite graph B=(V,W,E_B) with |W|<=k points is NP-complete if G is non-chordal dually chordal and solvable in linear time otherwise. Our proof relies on a characterization of half-squares of tree-convex bipartite graphs, saying that these are precisely the chordal and dually chordal graphs.

## Subject Classification

##### ACM Subject Classification
• Mathematics of computing → Graph theory
##### Keywords
• map graph
• half-square
• edge clique cover
• edge clique partition
• graph classes

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Franz J. Brandenburg. Characterizing and Recognizing 4-Map Graphs. Algorithmica, 81(5):1818-1843, 2019. URL: https://doi.org/10.1007/s00453-018-0510-x.
2. Andreas Brandstädt, Feodor F. Dragan, Victor Chepoi, and Vitaly I. Voloshin. Dually Chordal Graphs. SIAM J. Discrete Math., 11(3):437-455, 1998. URL: https://doi.org/10.1137/S0895480193253415.
3. Maw-Shang Chang and Haiko Müller. On the Tree-Degree of Graphs. In Graph-Theoretic Concepts in Computer Science, 27th International Workshop, WG 2001, Boltenhagen, Germany, June 14-16, 2001, Proceedings, pages 44-54, 2001. URL: https://doi.org/10.1007/3-540-45477-2_6.
4. Zhi-Zhong Chen. Approximation Algorithms for Independent Sets in Map Graphs. J. Algorithms, 41(1):20-40, 2001. URL: https://doi.org/10.1006/jagm.2001.1178.
5. Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Planar Map Graphs. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 514-523, 1998. URL: https://doi.org/10.1145/276698.276865.
6. Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Map graphs. J. ACM, 49(2):127-138, 2002. URL: https://doi.org/10.1145/506147.506148.
7. Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Recognizing Hole-Free 4-Map Graphs in Cubic Time. Algorithmica, 45(2):227-262, 2006. URL: https://doi.org/10.1007/s00453-005-1184-8.
8. Zhi-Zhong Chen, Xin He, and Ming-Yang Kao. Nonplanar Topological Inference and Political-Map Graphs. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 17-19 January 1999, Baltimore, Maryland, USA., pages 195-204, 1999. URL: http://dl.acm.org/citation.cfm?id=314500.314558.
9. Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans. Algorithms, 1(1):33-47, 2005. URL: https://doi.org/10.1145/1077464.1077468.
10. Erik D. Demaine and MohammadTaghi Hajiaghayi. The Bidimensionality Theory and Its Algorithmic Applications. Comput. J., 51(3):292-302, 2008. URL: https://doi.org/10.1093/comjnl/bxm033.
11. Kord Eickmeyer and Ken-ichi Kawarabayashi. FO model checking on map graphs. In Fundamentals of Computation Theory - 21st International Symposium, FCT 2017, Bordeaux, France, September 11-13, 2017, Proceedings, pages 204-216, 2017. URL: https://doi.org/10.1007/978-3-662-55751-8_17.
12. Rudolf Fleischer and Xiaotian Wu. Edge Clique Partition of K₄-Free and Planar Graphs. In Computational Geometry, Graphs and Applications - 9th International Conference, CGGA 2010, Dalian, China, November 3-6, 2010, Revised Selected Papers, pages 84-95, 2010. URL: https://doi.org/10.1007/978-3-642-24983-9_9.
13. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Decomposition of Map Graphs with Applications. CoRR, abs/1903.01291, 2019. URL: http://arxiv.org/abs/1903.01291.
14. Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric graphs. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1563-1575, 2012. URL: https://doi.org/10.1137/1.9781611973099.124.
15. Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980. URL: https://doi.org/10.1016/C2013-0-10739-8.
16. Ian Holyer. The NP-Completeness of Some Edge-Partition Problems. SIAM J. Comput., 10(4):713-717, 1981. URL: https://doi.org/10.1137/0210054.
17. Lawrence T. Kou, Larry J. Stockmeyer, and C. K. Wong. Covering Edges by Cliques with Regard to Keyword Conflicts and Intersection Graphs. Commun. ACM, 21(2):135-139, 1978. URL: https://doi.org/10.1145/359340.359346.
18. Hoàng-Oanh Le and Van Bang Le. Hardness and structural results for half-squares of restricted tree-convex bipartite graphs. Algorithmica, in press, 2019. URL: https://doi.org/10.1007/s00453-018-0440-7.
19. Hoàng-Oanh Le and Van Bang Le. Map graphs having witnesses of large girth. Theor. Comput. Sci., 772:143-148, 2019. URL: https://doi.org/10.1016/j.tcs.2018.12.010.
20. Van Bang Le and Sheng-Lung Peng. On the complete width and edge clique cover problems. J. Comb. Optim., 36(2):532-548, 2018. URL: https://doi.org/10.1007/s10878-016-0106-9.
21. Tian Liu. Restricted Bipartite Graphs: Comparison and Hardness Results. In Algorithmic Aspects in Information and Management - 10th International Conference, AAIM 2014, Vancouver, BC, Canada, July 8-11, 2014. Proceedings, pages 241-252, 2014. URL: https://doi.org/10.1007/978-3-319-07956-1_22.
22. S. Ma, Walter D. Wallis, and Julin Wu. On the complexity of the clique partition problem. Congressus Numerantium, 67:59-66, 1988.
23. S. Ma, Walter D. Wallis, and Julin Wu. Clique Covering of Chordal Graphs. Utilitas Mathematica, 36:151-152, 1989.
24. Terry A. McKee and F. R. McMorris. Topics in Intersection Graph Theory. SIAM, 1999. URL: https://epubs.siam.org/doi/book/10.1137/1.9780898719802.
25. Matthias Mnich, Ignaz Rutter, and Jens M. Schmidt. Linear-time recognition of map graphs with outerplanar witness. Discrete Optimization, 28:63-77, 2018. URL: https://doi.org/10.1016/j.disopt.2017.12.002.
26. James Orlin. Contentment in graph theory: covering graphs with cliques. Indagationes Mathematicae, 80:406-424, 1977. URL: https://doi.org/10.1016/1385-7258(77)90055-5.
27. Jeremy P. Spinrad. Efficient Graph Representations. Fields Institute Monographs, 2003.
28. Mikkel Thorup. Map Graphs in Polynomial Time. In 39th Annual Symposium on Foundations of Computer Science, FOCS '98, November 8-11, 1998, Palo Alto, California, USA, pages 396-405, 1998. URL: https://doi.org/10.1109/SFCS.1998.743490.
29. Ryuhei Uehara. NP-complete problems on a 3-connected cubic planar graph and their applications. Tokyo Woman’s Christian University, Technical Report TWCU-M-0004, 1996/9. URL: http://www.jaist.ac.jp/~uehara/pdf/triangle.pdf.
30. W. D. Wallis and Julin Wu. On clique partitions of split graphs. Discrete Mathematics, 92(1-3):427-429, 1991. URL: https://doi.org/10.1016/0012-365X(91)90297-F.