The Colouring problem is to decide if the vertices of a graph can be coloured with at most k colours for an integer k, such that no two adjacent vertices are coloured alike. A graph G is H-free if G does not contain H as an induced subgraph. It is known that Colouring is NP-complete for H-free graphs if H contains a cycle or claw, even for fixed k >= 3. We examine to what extent the situation may change if in addition the input graph has bounded diameter.
@InProceedings{martin_et_al:LIPIcs.MFCS.2019.14, author = {Martin, Barnaby and Paulusma, Dani\"{e}l and Smith, Siani}, title = {{Colouring H-Free Graphs of Bounded Diameter}}, booktitle = {44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)}, pages = {14:1--14:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-117-7}, ISSN = {1868-8969}, year = {2019}, volume = {138}, editor = {Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.14}, URN = {urn:nbn:de:0030-drops-109584}, doi = {10.4230/LIPIcs.MFCS.2019.14}, annote = {Keywords: vertex colouring, H-free graph, diameter} }
Feedback for Dagstuhl Publishing