Document

# Packing Arc-Disjoint Cycles in Tournaments

## File

LIPIcs.MFCS.2019.27.pdf
• Filesize: 0.55 MB
• 14 pages

## Cite As

Stéphane Bessy, Marin Bougeret, R. Krithika, Abhishek Sahu, Saket Saurabh, Jocelyn Thiebaut, and Meirav Zehavi. Packing Arc-Disjoint Cycles in Tournaments. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.MFCS.2019.27

## Abstract

A tournament is a directed graph in which there is a single arc between every pair of distinct vertices. Given a tournament T on n vertices, we explore the classical and parameterized complexity of the problems of determining if T has a cycle packing (a set of pairwise arc-disjoint cycles) of size k and a triangle packing (a set of pairwise arc-disjoint triangles) of size k. We refer to these problems as Arc-disjoint Cycles in Tournaments (ACT) and Arc-disjoint Triangles in Tournaments (ATT), respectively. Although the maximization version of ACT can be seen as the linear programming dual of the well-studied problem of finding a minimum feedback arc set (a set of arcs whose deletion results in an acyclic graph) in tournaments, surprisingly no algorithmic results seem to exist for ACT. We first show that ACT and ATT are both NP-complete. Then, we show that the problem of determining if a tournament has a cycle packing and a feedback arc set of the same size is NP-complete. Next, we prove that ACT and ATT are fixed-parameter tractable, they can be solved in 2^{O(k log k)} n^{O(1)} time and 2^{O(k)} n^{O(1)} time respectively. Moreover, they both admit a kernel with O(k) vertices. We also prove that ACT and ATT cannot be solved in 2^{o(sqrt{k})} n^{O(1)} time under the Exponential-Time Hypothesis.

## Subject Classification

##### ACM Subject Classification
• Mathematics of computing → Graph theory
• Theory of computation → Complexity classes
• Theory of computation → Parameterized complexity and exact algorithms
• Theory of computation → Design and analysis of algorithms
• Mathematics of computing → Graph algorithms
##### Keywords
• arc-disjoint cycle packing
• tournaments
• parameterized algorithms
• kernelization

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. F. N. Abu-Khzam. An Improved Kernelization Algorithm for r-Set Packing. Inf. Process. Lett., 110(16):621-624, 2010.
2. I. Akaria and R. Yuster. Packing Edge-Disjoint Triangles in Regular and Almost Regular Tournaments. Discrete Math., 338(2):217-228, 2015.
3. N. Alon. Ranking Tournaments. SIAM J. Discrete Math., 20(1):137-142, 2006.
4. N. Alon, D. Lokshtanov, and S. Saurabh. Fast FAST. In 36th International Colloquium on Automata, Languages, and Programming (ICALP) Part I, pages 49-58, 2009.
5. N. Alon, R. Yuster, and U. Zwick. Color-Coding. J. ACM, 42(4):844-856, 1995.
6. J. Bang-Jensen and G. Gutin. Paths, Trees and Cycles in Tournaments. Congressus Numerantium, 115:131-170, 1996.
7. J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer-Verlag London, 2009.
8. S. Bessy, M. Bougeret, and J. Thiebaut. Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization. In 25th Annual European Symp. on Algorithms (ESA 2017), volume 87, pages 14:1-14:13, 2017.
9. S. Bessy, F. V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh, and S. Thomassé. Kernels for Feedback Arc Set in Tournaments. J. Comput. Syst. Sci, 77(6):1071-1078, 2011.
10. H. L. Bodlaender. On Disjoint Cycles. Int. J. Found. Comput. S., 5(1):59-68, 1994.
11. H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel Bounds for Disjoint Cycles and Disjoint Paths. Theor. Comput. Sci., 412(35):4570-4578, 2011.
12. A. Caprara, A. Panconesi, and R. Rizzi. Packing Cycles in Undirected Graphs. J. Algorithms, 48(1):239-256, 2003.
13. P. Charbit, S. Thomassé, and A. Yeo. The Minimum Feedback Arc Set Problem is NP-hard for Tournaments. Comb Probab Comput., 16(1):1-4, 2007.
14. M. Chudnovsky, P. Seymour, and B. Sullivan. Cycles in Dense Digraphs. Combinatorica, 28(1):1-18, 2008.
15. W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to Order Things. Journal of Artificial Intelligence Research, 10:243-270, 1999.
16. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.
17. Jean-Charles de Borda. Mémoire sur les élections au scrutin. Histoire de l'Académie Royale des Sciences, 1781.
18. D. Dorninger. Hamiltonian Circuits Determining the Order of Chromosomes. Discrete Appl. Math., 50(2):159-168, 1994.
19. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer-Verlag London, 2013.
20. C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank Aggregation Methods for the Web. In 10th International World Wide Web Conference, pages 613-622, 2001.
21. P. Erdős and L. Pósa. On Independent Circuits Contained in a Graph. Canadian J. Math., 17:347-352, 1965.
22. S. Even, A. Itai, and A. Shamir. On the Complexity of Timetable and Multicommodity Flow Problems. SIAM J. Comput., 5(4):691-703, 1976.
23. U. Feige. Faster FAST(Feedback Arc Set in Tournaments), 2009. URL: http://arxiv.org/abs/0911.5094.
24. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
25. F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Fast Local Search Algorithm for Weighted Feedback Arc Set in Tournaments. In 24th AAAI Conf. on Artificial Intelligence, pages 65-70, 2010.
26. F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, 2019.
27. S. Fortune, J. Hopcroft, and J. Wyllie. The Directed Subgraph Homeomorphism Problem. Theor. Comput. Sci., 10(2):111-121, 1980.
28. R. B. Gardner. Optimal Packings and Coverings of the Complete Directed Graph with 3-Circuits and with Transitive Triples. In 28th Southeastern International Conference on Combinatorics, Graph Theory and Computing, volume 127, pages 161-170, 1997.
29. E. Hemaspaandra, H. Spakowski, and J. Vogel. The Complexity of Kemeny Elections. Theor. Comput. Sci., 349(3):382-391, 2005.
30. R. Impagliazzo, R. Paturi, and F. Zane. Which Problems Have Strongly Exponential Complexity? J. Comput. Syst. Sci, 63(4):512-530, 2001.
31. M. Karpinski and W. Schudy. Faster Algorithms for Feedback Arc Set Tournament, Kemeny Rank Aggregation and Betweenness Tournament. In 21st International Symp. on Algorithms and Computation (ISAAC), pages 3-14, 2010.
32. T. P. Kirkman. On a Problem in Combinations. Cambridge and Dublin Mathematical Journal, 2:191-204, 1847.
33. M. Krivelevich, Z. Nutov, M. R. Salavatipour, J. V. Yuster, and R. Yuster. Approximation Algorithms and Hardness Results for Cycle Packing Problems. ACM Transactions on Algorithms, 3(4), 2007.
34. M. Krivelevich, Z. Nutov, and R. Yuster. Approximation Algorithms for Cycle Packing Problems. In 16th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 556-561, 2005.
35. T. Le, D. Lokshtanov, S. Saurabh, S. Thomassé, and M. Zehavi. Subquadratic Kernels for Implicit 3-Hitting Set and 3-Set Packing Problems. In 29th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 331-342, 2018.
36. D. Lokshtanov, A. Mouawad, S. Saurabh, and M. Zehavi. Packing Cycles Faster Than Erdős-Pósa. In 44th International Colloquium on Automata, Languages, and Programming (ICALP), pages 71:1-71:15, 2017.
37. M. Mahajan and V. Raman. Parameterizing Above Guaranteed Values: MaxSat and MaxCut. J. Algorithms, 31(2):335-354, 1999.
38. J.W. Moon. Topics on Tournaments. Holt, Rinehart and Winston, New York, 1968.
39. C. H. Papadimitriou. Computational Complexity. John Wiley and Sons Ltd., 2003.
40. M. Pilipczuk. Tournaments and Optimality: New Results in Parameterized Complexity. PhD thesis, The University of Bergen, 2013.
41. J. P. Schmidt and A. Siegel. The Spatial Complexity of Oblivious k-Probe Hash Functions. SIAM J. Comput., 19(5):775-786, 1990.
42. A. Slivkins. Parameterized Tractability of Edge-Disjoint Paths on Directed Acyclic Graphs. SIAM J. Discrete Math., 24(1):146-157, 2010.
43. C. A. Tovey. A simplified NP-complete satisfiability problem. Discrete Appl. Math., 8(1):85-89, 1984.
44. R. Yuster. Packing Triangles in Regular Tournaments. J. of Graph Theory, 74(1):58-66, 2013.
X

Feedback for Dagstuhl Publishing