Extending Nearly Complete 1-Planar Drawings in Polynomial Time

Authors Eduard Eiben , Robert Ganian , Thekla Hamm, Fabian Klute , Martin Nöllenburg

Thumbnail PDF


  • Filesize: 0.67 MB
  • 16 pages

Document Identifiers

Author Details

Eduard Eiben
  • Department of Computer Science, Royal Holloway, University of London, Egham, UK
Robert Ganian
  • Algorithms and Complexity Group, TU Wien, Austria
Thekla Hamm
  • Algorithms and Complexity Group, TU Wien, Austria
Fabian Klute
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
Martin Nöllenburg
  • Algorithms and Complexity Group, TU Wien, Austria

Cite AsGet BibTex

Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending Nearly Complete 1-Planar Drawings in Polynomial Time. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


The problem of extending partial geometric graph representations such as plane graphs has received considerable attention in recent years. In particular, given a graph G, a connected subgraph H of G and a drawing H of H, the extension problem asks whether H can be extended into a drawing of G while maintaining some desired property of the drawing (e.g., planarity). In their breakthrough result, Angelini et al. [ACM TALG 2015] showed that the extension problem is polynomial-time solvable when the aim is to preserve planarity. Very recently we considered this problem for partial 1-planar drawings [ICALP 2020], which are drawings in the plane that allow each edge to have at most one crossing. The most important question identified and left open in that work is whether the problem can be solved in polynomial time when H can be obtained from G by deleting a bounded number of vertices and edges. In this work, we answer this question positively by providing a constructive polynomial-time decision algorithm.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Extension problems
  • 1-planarity


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Michael Albertson. Chromatic number, independence ratio, and crossing number. ARS MATHEMATICA CONTEMPORANEA, 1(1):1-6, 2008. URL: https://doi.org/10.26493/1855-3974.10.2d0.
  2. Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl, Maurizio Patrignani, and Ignaz Rutter. Testing planarity of partially embedded graphs. ACM Trans. Algorithms, 11(4):32:1-32:42, 2015. URL: https://doi.org/10.1145/2629341.
  3. Alan Arroyo, Martin Derka, and Irene Parada. Extending simple drawings. In Daniel Archambault and Csaba D. Tóth, editors, 27th International Symposium on Graph Drawing and Network Visualization (GD'19), volume 11904 of LNCS, pages 230-243. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-35802-0_18.
  4. Alan Arroyo, Fabian Klute, Irene Parada, Raimund Seidel, Birgit Vogtenhuber, and Tilo Wiedera. Extending simple drawings with one edge is hard. CoRR, abs/1909.07347, 2019. Accepted for presentation at WG'20. URL: http://arxiv.org/abs/1909.07347.
  5. Franz J. Brandenburg. Recognizing IC-planar and NIC-planar graphs. J. Graph Algorithms Appl., 22(2):239-271, 2018. URL: https://doi.org/10.7155/jgaa.00466.
  6. Guido Brückner and Ignaz Rutter. Partial and constrained level planarity. In Philip N. Klein, editor, Discrete Algorithms (SODA'17), pages 2000-2011. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.130.
  7. Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput., 42(5):1803-1829, 2013. URL: https://doi.org/10.1137/120872310.
  8. Erin W. Chambers, David Eppstein, Michael T. Goodrich, and Maarten Löffler. Drawing graphs in the plane with a prescribed outer face and polynomial area. J. Graph Algorithms Appl., 16(2):243-259, 2012. URL: https://doi.org/10.7155/jgaa.00257.
  9. Timothy M. Chan, Fabrizio Frati, Carsten Gutwenger, Anna Lubiw, Petra Mutzel, and Marcus Schaefer. Drawing partially embedded and simultaneously planar graphs. J. Graph Algorithms Appl., 19(2):681-706, 2015. URL: https://doi.org/10.7155/jgaa.00375.
  10. Steven Chaplick, Paul Dorbec, Jan Kratochvíl, Mickaël Montassier, and Juraj Stacho. Contact representations of planar graphs: Extending a partial representation is hard. In Dieter Kratsch and Ioan Todinca, editors, 40th International Workshop on Graph-Theoretic Concepts in Computer Science (WG'14), volume 8747 of LNCS, pages 139-151. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-12340-0_12.
  11. Steven Chaplick, Radoslav Fulek, and Pavel Klavík. Extending partial representations of circle graphs. In Stephen K. Wismath and Alexander Wolff, editors, 21st International Symposium on Graph Drawing (GD'13), volume 8242 of LNCS, pages 131-142. Springer, 2013. URL: https://doi.org/10.1007/978-3-319-03841-4_12.
  12. Steven Chaplick, Grzegorz Guśpiel, Grzegorz Gutowski, Tomasz Krawczyk, and Giuseppe Liotta. The partial visibility representation extension problem. Algorithmica, 80(8):2286-2323, 2018. URL: https://doi.org/10.1007/s00453-017-0322-4.
  13. Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  14. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  15. Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Extending upward planar graph drawings. In Zachary Friggstad, Jörg-Rüdiger Sack, and Mohammad R. Salavatipour, editors, 16th International Symposium on Algorithms and Data Structures (WADS'19), volume 11646 of LNCS, pages 339-352. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-24766-9_25.
  16. H. De Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 10(1):41-51, 1990. URL: https://doi.org/10.1007/BF02122694.
  17. Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing beyond planarity. ACM Comput. Surv., 52(1):4:1-4:37, 2019. URL: https://doi.org/10.1145/3301281.
  18. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  19. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1.
  20. Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending partial 1-planar drawings. In 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, 2020. To appear. Google Scholar
  21. Jakub Gajarský, Petr Hliněný, Jan Obdržálek, Sebastian Ordyniak, Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. Kernelization using structural parameters on sparse graph classes. J. Comput. Syst. Sci., 84:219-242, 2017. URL: https://doi.org/10.1016/j.jcss.2016.09.002.
  22. Alexander Grigoriev and Hans L. Bodlaender. Algorithms for graphs embeddable with few crossings per edge. Algorithmica, 49(1):1-11, 2007. URL: https://doi.org/10.1007/s00453-007-0010-x.
  23. Seok-Hee Hong and Hiroshi Nagamochi. Convex drawings of graphs with non-convex boundary constraints. Discrete Applied Mathematics, 156(12):2368-2380, 2008. Google Scholar
  24. Seok-Hee Hong and Takeshi Tokuyama, editors. Beyond Planar Graphs. Springer, 2020. Google Scholar
  25. Pavel Klavík, Jan Kratochvíl, Tomasz Krawczyk, and Bartosz Walczak. Extending partial representations of function graphs and permutation graphs. In Leah Epstein and Paolo Ferragina, editors, 20th Annual European Symposium on Algorithms (ESA'12), volume 7501 of LNCS, pages 671-682. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-33090-2_58.
  26. Pavel Klavík, Jan Kratochvíl, Yota Otachi, Ignaz Rutter, Toshiki Saitoh, Maria Saumell, and Tomás Vyskocil. Extending partial representations of proper and unit interval graphs. Algorithmica, 77(4):1071-1104, 2017. URL: https://doi.org/10.1007/s00453-016-0133-z.
  27. Pavel Klavík, Jan Kratochvíl, Yota Otachi, and Toshiki Saitoh. Extending partial representations of subclasses of chordal graphs. Theor. Comput. Sci., 576:85-101, 2015. URL: https://doi.org/10.1016/j.tcs.2015.02.007.
  28. Pavel Klavík, Jan Kratochvíl, Yota Otachi, Toshiki Saitoh, and Tomáš Vyskočil. Extending partial representations of interval graphs. Algorithmica, 78(3):945-967, 2017. URL: https://doi.org/10.1007/s00453-016-0186-z.
  29. Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. An annotated bibliography on 1-planarity. Computer Science Review, 25:49-67, 2017. URL: https://doi.org/10.1016/j.cosrev.2017.06.002.
  30. Vladimir P. Korzhik and Bojan Mohar. Minimal obstructions for 1-immersions and hardness of 1-planarity testing. Journal of Graph Theory, 72(1):30-71, 2013. URL: https://doi.org/10.1002/jgt.21630.
  31. Giuseppe Liotta and Fabrizio Montecchiani. L-visibility drawings of IC-planar graphs. Inf. Process. Lett., 116(3):217-222, 2016. URL: https://doi.org/10.1016/j.ipl.2015.11.011.
  32. Tamara Mchedlidze, Martin Nöllenburg, and Ignaz Rutter. Extending convex partial drawings of graphs. Algorithmica, 76(1):47-67, 2016. URL: https://doi.org/10.1007/s00453-015-0018-6.
  33. Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout adjustment and the mental map. J. Visual Languages and Computing, 6(2):183-210, 1995. URL: https://doi.org/10.1006/jvlc.1995.1010.
  34. János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Combinatorica, 17(3):427-439, 1997. Google Scholar
  35. János Pach and Rephael Wenger. Embedding planar graphs at fixed vertex locations. Graphs and Combinatorics, 17(4):717-728, 2001. URL: https://doi.org/10.1007/PL00007258.
  36. Maurizio Patrignani. On extending a partial straight-line drawing. Int. J. Found. Comput. Sci., 17(5):1061-1070, 2006. URL: https://doi.org/10.1142/S0129054106004261.
  37. Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 29(1):107-117, 1965. URL: https://doi.org/10.1007/BF02996313.
  38. Walter Schnyder. Embedding planar graphs on the grid. In Symposium on Discrete Algorithms (SODA'90), pages 138-148. SIAM, 1990. Google Scholar