Document

# Quick Separation in Chordal and Split Graphs

## File

LIPIcs.MFCS.2020.70.pdf
• Filesize: 0.63 MB
• 14 pages

## Cite As

Pranabendu Misra, Fahad Panolan, Ashutosh Rai, Saket Saurabh, and Roohani Sharma. Quick Separation in Chordal and Split Graphs. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 70:1-70:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.MFCS.2020.70

## Abstract

In this paper we study two classical cut problems, namely Multicut and Multiway Cut on chordal graphs and split graphs. In the Multicut problem, the input is a graph G, a collection of 𝓁 vertex pairs (s_i, t_i), i ∈ [𝓁], and a positive integer k and the goal is to decide if there exists a vertex subset S ⊆ V(G)⧵ {s_i,t_i : i ∈ [𝓁]} of size at most k such that for every vertex pair (s_i,t_i), s_i and t_i are in two different connected components of G-S. In Unrestricted Multicut, the solution S can possibly pick the vertices in the vertex pairs {(s_i,t_i): i ∈ [𝓁]}. An important special case of the Multicut problem is the Multiway Cut problem, where instead of vertex pairs, we are given a set T of terminal vertices, and the goal is to separate every pair of distinct vertices in T× T. The fixed parameter tractability (FPT) of these problems was a long-standing open problem and has been resolved fairly recently. Multicut and Multiway Cut now admit algorithms with running times 2^{{𝒪}(k³)}n^{{𝒪}(1)} and 2^k n^{{𝒪}(1)}, respectively. However, the kernelization complexity of both these problems is not fully resolved: while Multicut cannot admit a polynomial kernel under reasonable complexity assumptions, it is a well known open problem to construct a polynomial kernel for Multiway Cut. Towards designing faster FPT algorithms and polynomial kernels for the above mentioned problems, we study them on chordal and split graphs. In particular we obtain the following results. 1) Multicut on chordal graphs admits a polynomial kernel with {𝒪}(k³ 𝓁⁷) vertices. Multiway Cut on chordal graphs admits a polynomial kernel with {𝒪}(k^{13}) vertices. 2) Multicut on chordal graphs can be solved in time min {𝒪(2^{k} ⋅ (k³+𝓁) ⋅ (n+m)), 2^{𝒪(𝓁 log k)} ⋅ (n+m) + 𝓁 (n+m)}. Hence Multicut on chordal graphs parameterized by the number of terminals is in XP. 3) Multicut on split graphs can be solved in time min {𝒪(1.2738^k + kn+𝓁(n+m), 𝒪(2^{𝓁} ⋅ 𝓁 ⋅ (n+m))}. Unrestricted Multicut on split graphs can be solved in time 𝒪(4^{𝓁}⋅ 𝓁 ⋅ (n+m)).

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Parameterized complexity and exact algorithms
##### Keywords
• chordal graphs
• multicut
• multiway cut
• FPT
• kernel

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM J. Comput., 47(1):166-207, 2018.
2. Jianer Chen, Iyad A Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoretical Computer Science, 411(40-42):3736-3756, 2010.
3. Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the minimum node multiway cut problem. Algorithmica, 55(1):1-13, 2009.
4. Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Magnus Wahlström. Clique cover and graph separation: New incompressibility results. TOCT, 6(2):6:1-6:19, 2014.
5. Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk. On multiway cut parameterized above lower bounds. TOCT, 5(1):3:1-3:11, 2013.
6. Gruia Călinescu, Cristina G. Fernandes, and Bruce Reed. Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width. Journal of Algorithms, 48(2):333-359, 2003.
7. E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis. The complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864-894, 1994.
8. Elias Dahlhaus. Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition. J. Algorithms, 36(2):205-240, 2000.
9. Reinhard Diestel. Graph theory. 2005. Grad. Texts in Math, 101, 2005.
10. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, 2019.
11. Philippe Galinier, Michel Habib, and Christophe Paul. Chordal graphs and their clique graphs. In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer Science, 21st International Workshop, WG '95, Aachen, Germany, June 20-22, 1995, Proceedings, volume 1017 of Lecture Notes in Computer Science, pages 358-371. Springer, 1995.
12. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.
13. Jiong Guo, Falk Hüffner, Erhan Kenar, Rolf Niedermeier, and Johannes Uhlmann. Complexity and exact algorithms for vertex multicut in interval and bounded treewidth graphs. European Journal of Operational Research, 186(2):542-553, 2008.
14. Bart M. P. Jansen, Marcin Pilipczuk, and Erik Jan van Leeuwen. A Deterministic Polynomial Kernel for Odd Cycle Transversal and Vertex Multiway Cut in Planar Graphs. In Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019), volume 126 of Leibniz International Proceedings in Informatics (LIPIcs), pages 39:1-39:18, Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
15. Philip N. Klein and Dániel Marx. Solving planar k -terminal cut in o(n^c√k) time. In Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages 569-580. Springer, 2012.
16. Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernelization. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 450-459. IEEE Computer Society, 2012.
17. Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394-406, 2006.
18. Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the size of the cutset. SIAM J. Comput., 43(2):355-388, 2014.
19. Charis Papadopoulos. Restricted vertex multicut on permutation graphs. Discrete Applied Mathematics, 160(12):1791-1797, 2012.