Document

On the Binary and Boolean Rank of Regular Matrices

File

LIPIcs.MFCS.2022.56.pdf
• Filesize: 0.62 MB
• 14 pages

Cite As

Ishay Haviv and Michal Parnas. On the Binary and Boolean Rank of Regular Matrices. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 56:1-56:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.MFCS.2022.56

Abstract

A 0,1 matrix is said to be regular if all of its rows and columns have the same number of ones. We prove that for infinitely many integers k, there exists a square regular 0,1 matrix with binary rank k, such that the Boolean rank of its complement is k^Ω̃(log k). Equivalently, the ones in the matrix can be partitioned into k combinatorial rectangles, whereas the number of rectangles needed for any cover of its zeros is k^Ω̃(log k). This settles, in a strong form, a question of Pullman (Linear Algebra Appl., 1988) and a conjecture of Hefner, Henson, Lundgren, and Maybee (Congr. Numer., 1990). The result can be viewed as a regular analogue of a recent result of Balodis, Ben-David, Göös, Jain, and Kothari (FOCS, 2021), motivated by the clique vs. independent set problem in communication complexity and by the (disproved) Alon-Saks-Seymour conjecture in graph theory. As an application of the produced regular matrices, we obtain regular counterexamples to the Alon-Saks-Seymour conjecture and prove that for infinitely many integers k, there exists a regular graph with biclique partition number k and chromatic number k^Ω̃(log k).

Subject Classification

ACM Subject Classification
• Theory of computation → Communication complexity
• Mathematics of computing → Graph coloring
Keywords
• Binary rank
• Boolean rank
• Regular matrices
• Non-deterministic communication complexity
• Biclique partition number
• Chromatic number

Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

References

1. Kazuyuki Amano. Some improved bounds on communication complexity via new decomposition of cliques. Discret. Appl. Math., 166:249-254, 2014.
2. Kaspars Balodis, Shalev Ben-David, Mika Göös, Siddhartha Jain, and Robin Kothari. Unambiguous DNFs and Alon-Saks-Seymour. In IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS'21), pages 116-124. IEEE, 2021.
3. Shalev Ben-David, Pooya Hatami, and Avishay Tal. Low-sensitivity functions from unambiguous certificates. In 8th Innovations in Theoretical Computer Science Conference (ITCS'17), pages 28:1-28:23, 2017.
4. Jan Bouda, Matej Pivoluska, and Martin Plesch. Improving the Hadamard extractor. Theor. Comput. Sci., 459:69-76, 2012.
5. Nicolas Bousquet, Aurélie Lagoutte, Frédéric Maffray, and Lucas Pastor. Decomposition techniques applied to the clique-stable set separation problem. Discret. Math., 341(5):1492-1501, 2018.
6. Nicolas Bousquet, Aurélie Lagoutte, and Stéphan Thomassé. Clique versus independent set. European J. Combinatorics, 40:73-92, 2014.
7. Richard A. Brualdi, Rachel Manber, and Jeffrey A. Ross. On the minimum rank of regular classes of matrices of zeros and ones. J. Combin. Theory Ser. A, 41(1):32-49, 1986.
8. Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi. Query-to-communication lifting using low-discrepancy gadgets. SIAM J. Comput., 50(1):171-210, 2021. Preliminary version in ICALP'19.
9. Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput., 17(2):230-261, 1988. Preliminary version in FOCS'85.
10. Maria Chudnovsky and Paul Seymour. Subdivided claws and the clique-stable set separation property. In 2019-20 MATRIX Annals, volume 4, pages 483-487. Springer, 2021.
11. Sebastian M. Cioabă and Michael Tait. More counterexamples to the Alon-Saks-Seymour and rank-coloring conjectures. Electron. J. Combinatorics, 18(1), 2011.
12. D. de Caen, David A. Gregory, and Norman J. Pullman. The Boolean rank of zero-one matrices. Proc. of the 3rd Caribbean Conference on Combinatorics and Computing, pages 169-173, 1981.
13. Mika Göös. Lower bounds for clique vs. independent set. In IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS'15), pages 1066-1076, 2015.
14. Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles are nonnegative juntas. SIAM J. Comput., 45(5):1835-1869, 2016. Preliminary version in STOC'15.
15. Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition number. SIAM J. Comput., 47(6):2435-2450, 2018. Preliminary version in FOCS'15.
16. Ronald L. Graham and Henry O. Pollak. On the addressing problem for loop switching. Bell Syst. Tech. J., 50(8):2495-2519, 1971.
17. David A. Gregory, Norman J. Pullman, Kathryn F. Jones, and J. Richard Lundgren. Biclique coverings of regular bigraphs and minimum semiring ranks of regular matrices. J. Comb. Theory, Ser. B, 51(1):73-89, 1991.
18. Kim A. S. Hefner, Teresa D. Henson, J. Richard Lundgren, and John S. Maybee. Biclique coverings of bigraphs and digraphs and minimum semiring ranks of 0,1-matrices. Congr. Numer., 71:115-122, 1990.
19. Hao Huang and Benny Sudakov. A counterexample to the Alon-Saks-Seymour conjecture and related problems. Combinatorica, 32(2):205-219, 2012.
20. Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms and Combinatorics. Springer, 2012.
21. Jeff Kahn. Recent results on some not-so-recent hypergraph matching and covering problems. In Extremal Problems for Finite Sets, pages 305-353. Bolyai Soc. Math. Stud., 1994.
22. Pravesh K. Kothari, Raghu Meka, and Prasad Raghavendra. Approximating rectangles by juntas and weakly-exponential lower bounds for LP relaxations of CSPs. In Proc. of the 49th Annual ACM Symposium on Theory of Computing (STOC'17), pages 590-603, 2017.
23. Aurélie Lagoutte and Théophile Trunck. Clique-stable set separation in perfect graphs with no balanced skew-partitions. Discret. Math., 339(6):1809-1825, 2016.
24. László Lovász and Michael E. Saks. Lattices, Möbius functions and communication complexity. In IEEE 29th Annual Symposium on Foundations of Computer Science (FOCS'88), pages 81-90, 1988.
25. Shachar Lovett. Recent advances on the log-rank conjecture in communication complexity. Bull. EATCS, 112, 2014.
26. Sylvia D. Monson, Norman J. Pullman, and Rolf Rees. A survey of clique and biclique coverings and factorizations of (0,1)-matrices. Bull. Inst. Combin. Appl., 14:17-86, 1995.
27. Norman J. Pullman. Ranks of binary matrices with constant line sums. Linear Algebra Appl., 104:193-197, 1988.
28. Alexander A. Razborov. The gap between the chromatic number of a graph and the rank of its adjacency matrix is superlinear. Discret. Math., 108(1-3):393-396, 1992.
29. Manami Shigeta and Kazuyuki Amano. Ordered biclique partitions and communication complexity problems. Discret. Appl. Math., 184:248-252, 2015.
30. Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci., 43(3):441-466, 1991. Preliminary version in STOC'88.
31. Andrew Chi-Chih Yao. Some complexity questions related to distributive computing. In Proc. of the 11th Annual ACM Symposium on Theory of Computing (STOC'79), pages 209-213, 1979.