A recent work showed that, for all n and k, there is a linearizable (n,k)-set agreement object O_L that is equivalent to the (n,k)-set agreement task [David Yu Cheng Chan et al., 2017]: given O_L, it is possible to solve the (n,k)-set agreement task, and given any algorithm that solves the (n,k)-set agreement task (and registers), it is possible to implement O_L. This linearizable object O_L, however, is not deterministic. It turns out that there is also a deterministic (n,k)-set agreement object O_D that is equivalent to the (n,k)-set agreement task, but this deterministic object O_D is not linearizable. This raises the question whether there exists a deterministic and linearizable (n,k)-set agreement object that is equivalent to the (n,k)-set agreement task. Here we show that in general the answer is no: specifically, we prove that for all n ≥ 4, every deterministic linearizable (n,2)-set agreement object is strictly stronger than the (n,2)-set agreement task. We prove this by showing that, for all n ≥ 4, every deterministic and linearizable (n,2)-set agreement object (together with registers) can be used to solve 2-consensus, whereas it is known that the (n,2)-set agreement task cannot do so. For a natural subset of (n,2)-set agreement objects, we prove that this result holds even for n = 3.
@InProceedings{deazevedopiovezan_et_al:LIPIcs.OPODIS.2019.16, author = {de Azevedo Piovezan, Felipe and Hadzilacos, Vassos and Toueg, Sam}, title = {{On Deterministic Linearizable Set Agreement Objects}}, booktitle = {23rd International Conference on Principles of Distributed Systems (OPODIS 2019)}, pages = {16:1--16:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-133-7}, ISSN = {1868-8969}, year = {2020}, volume = {153}, editor = {Felber, Pascal and Friedman, Roy and Gilbert, Seth and Miller, Avery}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2019.16}, URN = {urn:nbn:de:0030-drops-118026}, doi = {10.4230/LIPIcs.OPODIS.2019.16}, annote = {Keywords: Asynchronous shared-memory systems, consensus, set agreement, deterministic objects} }
Feedback for Dagstuhl Publishing