We provide CONGEST model algorithms for approximating the minimum weighted vertex cover and the maximum weighted matching problem. For bipartite graphs, we show that a (1+ε)-approximate weighted vertex cover can be computed deterministically in poly((log n)/ε) rounds. This generalizes a corresponding result for the unweighted vertex cover problem shown in [Faour, Kuhn; OPODIS '20]. Moreover, we show that in general weighted graph families that are closed under taking subgraphs and in which we can compute an independent set of weight at least λ⋅ w(V) (where w(V) denotes the total weight of all nodes) in polylogarithmic time in the CONGEST model, one can compute a (2-2λ +ε)-approximate weighted vertex cover in poly((log n)/ε) rounds in the CONGEST model. Our result in particular implies that in graphs of arboricity a, one can compute a (2-1/a+ε)-approximate weighted vertex cover problem in poly((log n)/ε) rounds in the CONGEST model. For maximum weighted matchings, we show that a (1-ε)-approximate solution can be computed deterministically in time 2^{O(1/ε)}⋅ polylog n in the CONGEST model. We also provide a randomized algorithm that with arbitrarily good constant probability succeeds in computing a (1-ε)-approximate weighted matching in time 2^{O(1/ε)}⋅ polylog(Δ W)⋅ log^* n, where W denotes the ratio between the largest and the smallest edge weight. Our algorithm generalizes results of [Lotker, Patt-Shamir, Pettie; SPAA '08] and [Bar-Yehuda, Hillel, Ghaffari, Schwartzman; PODC '17], who gave 2^{O(1/ε)}⋅ log n and 2^{O(1/ε)}⋅ (logΔ)/(log logΔ)-round randomized approximations for the unweighted matching problem. Finally, we show that even in the LOCAL model and in bipartite graphs of degree ≤ 3, if ε < ε₀ for some constant ε₀ > 0, then computing a (1+ε)-approximation for the unweighted minimum vertex cover problem requires Ω((log n)/ε) rounds. This generalizes a result of [Göös, Suomela; DISC '12], who showed that computing a (1+ε₀)-approximation in such graphs requires Ω(log n) rounds.
@InProceedings{faour_et_al:LIPIcs.OPODIS.2021.17, author = {Faour, Salwa and Fuchs, Marc and Kuhn, Fabian}, title = {{Distributed CONGEST Approximation of Weighted Vertex Covers and Matchings}}, booktitle = {25th International Conference on Principles of Distributed Systems (OPODIS 2021)}, pages = {17:1--17:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-219-8}, ISSN = {1868-8969}, year = {2022}, volume = {217}, editor = {Bramas, Quentin and Gramoli, Vincent and Milani, Alessia}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2021.17}, URN = {urn:nbn:de:0030-drops-157928}, doi = {10.4230/LIPIcs.OPODIS.2021.17}, annote = {Keywords: distributed graph algorithms, minimum weighted vertex cover, maximum weighted matching, distributed optimization, CONGEST model} }
Feedback for Dagstuhl Publishing