Multistage Shortest Path: Instances and Practical Evaluation

Authors Markus Chimani , Niklas Troost



PDF
Thumbnail PDF

File

LIPIcs.SAND.2023.14.pdf
  • Filesize: 2.36 MB
  • 19 pages

Document Identifiers

Author Details

Markus Chimani
  • Theoretical Computer Science, Universität Osnabrück, Germany
Niklas Troost
  • Theoretical Computer Science, Universität Osnabrück, Germany

Cite AsGet BibTex

Markus Chimani and Niklas Troost. Multistage Shortest Path: Instances and Practical Evaluation. In 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 257, pp. 14:1-14:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.SAND.2023.14

Abstract

A multistage graph problem is a generalization of a traditional graph problem where, instead of a single input graph, we consider a sequence of graphs. We ask for a sequence of solutions, one for each input graph, such that consecutive solutions are as similar as possible. There are several theoretical results on different multistage problems and their complexities, as well as FPT and approximation algorithms. However, there is a severe lack of experimental validation and resulting feedback. Not only are there no algorithmic experiments in literature, we do not even know of any strong set of multistage benchmark instances. In this paper we want to improve on this situation. We consider the natural problem of multistage shortest path (MSP). First, we propose a rich benchmark set, ranging from synthetic to real-world data, and discuss relevant aspects to ensure non-trivial instances, which is a surprisingly delicate task. Secondly, we present an explorative study on heuristic, approximate, and exact algorithms for the MSP problem from a practical point of view. Our practical findings also inform theoretical research in arguing sensible further directions. For example, based on our study we propose to focus on algorithms for multistage instances that do not rely on 2-stage oracles.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Multistage Graphs
  • Shortest Paths
  • Experiments

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Evripidis Bampis, Bruno Escoffier, and Alexander Kononov. LP-based algorithms for multistage minimization problems. In Christos Kaklamanis and Asaf Levin, editors, Approximation and Online Algorithms, Lecture Notes in Computer Science, pages 1-15. Springer International Publishing, 2021. URL: https://doi.org/10.1007/978-3-030-80879-2_1.
  2. Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th Paschos. Multistage matchings. In David Eppstein, editor, 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018), volume 101 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1-7:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. ISSN: 1868-8969. URL: https://doi.org/10.4230/LIPIcs.SWAT.2018.7.
  3. Evripidis Bampis, Bruno Escoffier, Kevin Schewior, and Alexandre Teiller. Online multistage subset maximization problems. Algorithmica, 83(8):2374-2399, 2021-08-01. URL: https://doi.org/10.1007/s00453-021-00834-7.
  4. Evripidis Bampis, Bruno Escoffier, and Alexandre Teiller. Multistage knapsack. Journal of Computer and System Sciences, 126:106-118, 2022-06-01. URL: https://doi.org/10.1016/j.jcss.2022.01.002.
  5. Béla Bollobás and Oliver Riordan. The diameter of a scale-free RandomGraph. Combinatorica, 24(1):5-34, 2004-01-01. URL: https://doi.org/10.1007/s00493-004-0002-2.
  6. Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau, Karsten Klein, and Petra Mutzel. The open graph drawing framework (OGDF). In Roberto Tamassia, editor, Handbook on graph drawing and visualization, pages 543-569. Chapman and Hall/CRC, 2013. Google Scholar
  7. Markus Chimani, Niklas Troost, and Tilo Wiedera. A general approach to approximate multistage subgraph problems, 2021-07-06. URL: https://doi.org/10.48550/arXiv.2107.02581.
  8. Markus Chimani, Niklas Troost, and Tilo Wiedera. Approximating multistage matching problems. Algorithmica, 84(8):2135-2153, 2022-08-01. URL: https://doi.org/10.1007/s00453-022-00951-x.
  9. Fan Chung and Linyuan Lu. The diameter of sparse random graphs. Advances in Applied Mathematics, 26(4):257-279, 2001-05-01. URL: https://doi.org/10.1006/aama.2001.0720.
  10. Huanqing Cui, Ruixue Liu, Shaohua Xu, and Chuanai Zhou. DMGA: A distributed shortest path algorithm for multistage graph. Scientific Programming, 2021:e6639008, 2021-06-01. Publisher: Hindawi. URL: https://doi.org/10.1155/2021/6639008.
  11. E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1):269-271, 1959-12-01. URL: https://doi.org/10.1007/BF01386390.
  12. Nathan Eagle and Alex (Sandy) Pentland. Reality mining: sensing complex social systems. Pers Ubiquit Comput, 10(4):255-268, 2006-05-01. URL: https://doi.org/10.1007/s00779-005-0046-3.
  13. David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility location in evolving metrics. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming, Lecture Notes in Computer Science, pages 459-470. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-43951-7_39.
  14. D. Eppstein, M. S. Paterson, and F. F. Yao. On nearest-neighbor graphs. Discrete Comput Geom, 17(3):263-282, 1997-04-01. URL: https://doi.org/10.1007/PL00009293.
  15. Till Fluschnik. A multistage view on 2-satisfiability. In Tiziana Calamoneri and Federico Corò, editors, Algorithms and Complexity, Lecture Notes in Computer Science, pages 231-244. Springer International Publishing, 2021. URL: https://doi.org/10.1007/978-3-030-75242-2_16.
  16. Till Fluschnik, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche. Multistage vertex cover. Theory Comput Syst, 66(2):454-483, 2022-04-01. URL: https://doi.org/10.1007/s00224-022-10069-w.
  17. Till Fluschnik, Rolf Niedermeier, Carsten Schubert, and Philipp Zschoche. Multistage s-t path: Confronting similarity with dissimilarity in temporal graphs. In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors, 31st International Symposium on Algorithms and Computation (ISAAC 2020), volume 181 of Leibniz International Proceedings in Informatics (LIPIcs), pages 43:1-43:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020. ISSN: 1868-8969. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2020.43.
  18. Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage optimization for matroids and matchings. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming, Lecture Notes in Computer Science, pages 563-575. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-43948-7_47.
  19. Klaus Heeger, Anne-Sophie Himmel, Frank Kammer, Rolf Niedermeier, Malte Renken, and Andrej Sajenko. Multistage graph problems on a global budget. Theoretical Computer Science, 868:46-64, 2021-05-08. URL: https://doi.org/10.1016/j.tcs.2021.04.002.
  20. Johan Håstad. Some optimal inapproximability results. In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, STOC '97, pages 1-10. Association for Computing Machinery, 1997-05-04. URL: https://doi.org/10.1145/258533.258536.
  21. Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pinton, and Wouter Van den Broeck. What’s in a crowd? analysis of face-to-face behavioral networks. Journal of Theoretical Biology, 271(1):166-180, 2011-02-21. URL: https://doi.org/10.1016/j.jtbi.2010.11.033.
  22. Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for email classification research. In Jean-François Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino Pedreschi, editors, Machine Learning: ECML 2004, Lecture Notes in Computer Science, pages 217-226. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-30115-8_22.
  23. Jérôme Kunegis. KONECT: the koblenz network collection. In Proceedings of the 22nd International Conference on World Wide Web, WWW '13 Companion, pages 1343-1350. Association for Computing Machinery, 2013-05-13. URL: https://doi.org/10.1145/2487788.2488173.
  24. Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, KDD '05, pages 177-187. Association for Computing Machinery, 2005-08-21. URL: https://doi.org/10.1145/1081870.1081893.
  25. Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters, 2008-10-08. URL: https://doi.org/10.48550/arXiv.0810.1355.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail