Partitioning the Bags of a Tree Decomposition into Cliques

Authors Thomas Bläsius , Maximilian Katzmann , Marcus Wilhelm



PDF
Thumbnail PDF

File

LIPIcs.SEA.2023.3.pdf
  • Filesize: 1.36 MB
  • 19 pages

Document Identifiers

Author Details

Thomas Bläsius
  • Karlsruhe Institute of Technology, Germany
Maximilian Katzmann
  • Karlsruhe Institute of Technology, Germany
Marcus Wilhelm
  • Karlsruhe Institute of Technology, Germany

Cite AsGet BibTex

Thomas Bläsius, Maximilian Katzmann, and Marcus Wilhelm. Partitioning the Bags of a Tree Decomposition into Cliques. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.SEA.2023.3

Abstract

We consider a variant of treewidth that we call clique-partitioned treewidth in which each bag is partitioned into cliques. This is motivated by the recent development of FPT-algorithms based on similar parameters for various problems. With this paper, we take a first step towards computing clique-partitioned tree decompositions. Our focus lies on the subproblem of computing clique partitions, i.e., for each bag of a given tree decomposition, we compute an optimal partition of the induced subgraph into cliques. The goal here is to minimize the product of the clique sizes (plus 1). We show that this problem is NP-hard. We also describe four heuristic approaches as well as an exact branch-and-bound algorithm. Our evaluation shows that the branch-and-bound solver is sufficiently efficient to serve as a good baseline. Moreover, our heuristics yield solutions close to the optimum. As a bonus, our algorithms allow us to compute first upper bounds for the clique-partitioned treewidth of real-world networks. A comparison to traditional treewidth indicates that clique-partitioned treewidth is a promising parameter for graphs with high clustering.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Theory of computation → Graph algorithms analysis
Keywords
  • treewidth
  • weighted treewidth
  • algorithm engineering
  • cliques
  • clustering
  • complex networks

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Michael Abseher, Nysret Musliu, and Stefan Woltran. htd - A free, open-source framework for (customized) tree decompositions and beyond. In Domenico Salvagnin and Michele Lombardi, editors, Integration of AI and OR Techniques in Constraint Programming - 14th International Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings, volume 10335 of Lecture Notes in Computer Science, pages 376-386. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-59776-8_30.
  2. Chris Aronis. The algorithmic complexity of tree-clique width. CoRR, abs/2111.02200, 2021. URL: https://arxiv.org/abs/2111.02200.
  3. Thomas Bläsius and Philipp Fischbeck. On the external validity of average-case analyses of graph algorithms. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 21:1-21:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ESA.2022.21.
  4. Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel Penschuck, and Christopher Weyand. Efficiently generating geometric inhomogeneous and hyperbolic random graphs. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 21:1-21:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ESA.2019.21.
  5. Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Hyperbolic random graphs: Separators and treewidth. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 15:1-15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ESA.2016.15.
  6. Thomas Bläsius, Tobias Friedrich, David Stangl, and Christopher Weyand. An efficient branch-and-bound solver for hitting set. In Cynthia A. Phillips and Bettina Speckmann, editors, Proceedings of the Symposium on Algorithm Engineering and Experiments, ALENEX 2022, Alexandria, VA, USA, January 9-10, 2022, pages 209-220. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977042.17.
  7. Thomas Bläsius and Philipp Fischbeck. 3006 Networks (unweighted, undirected, simple, connected) from Network Repository, May 2022. URL: https://doi.org/10.5281/zenodo.6586185.
  8. Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random graphs. Theor. Comput. Sci., 760:35-54, 2019. URL: https://doi.org/10.1016/j.tcs.2018.08.014.
  9. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Treewidth, pages 151-244. Springer International Publishing, Cham, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3_7.
  10. Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin Milanic. Computing tree decompositions with small independence number. CoRR, abs/2207.09993, 2022. URL: https://doi.org/10.48550/arXiv.2207.09993.
  11. Clément Dallard, Martin Milanic, and Kenny Storgel. Treewidth versus clique number. i. graph classes with a forbidden structure. SIAM J. Discret. Math., 35(4):2618-2646, 2021. URL: https://doi.org/10.1137/20M1352119.
  12. Clément Dallard, Martin Milanic, and Kenny Storgel. Treewidth versus clique number. III. tree-independence number of graphs with a forbidden structure. CoRR, abs/2206.15092, 2022. URL: https://doi.org/10.48550/arXiv.2206.15092.
  13. Clément Dallard, Martin Milanič, and Kenny Štorgel. Treewidth versus clique number. ii. tree-independence number, 2021. URL: https://doi.org/10.48550/arXiv.2111.04543.
  14. Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der Zanden. A framework for eth-tight algorithms and lower bounds in geometric intersection graphs. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 574-586. ACM, 2018. URL: https://doi.org/10.1145/3188745.3188854.
  15. Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and Frances A. Rosamond. The First Parameterized Algorithms and Computational Experiments Challenge. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized and Exact Computation (IPEC 2016), volume 63 of Leibniz International Proceedings in Informatics (LIPIcs), pages 30:1-30:9, Dagstuhl, Germany, 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.IPEC.2016.30.
  16. Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE 2017 Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration. In Daniel Lokshtanov and Naomi Nishimura, editors, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017), volume 89 of Leibniz International Proceedings in Informatics (LIPIcs), pages 30:1-30:12, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.IPEC.2017.30.
  17. David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in large sparse real-world graphs. ACM J. Exp. Algorithmics, 18, 2013. URL: https://doi.org/10.1145/2543629.
  18. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.gurobi.com.
  19. David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On generating all maximal independent sets. Inf. Process. Lett., 27(3):119-123, 1988. URL: https://doi.org/10.1016/0020-0190(88)90065-8.
  20. Sándor Kisfaludi-Bak. Hyperbolic intersection graphs and (quasi)-polynomial time. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1621-1638. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.100.
  21. Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguñá. Hyperbolic geometry of complex networks. Phys. Rev. E, 82:036106, September 2010. URL: https://doi.org/10.1103/PhysRevE.82.036106.
  22. László Lovász. Graph minor theory. Bulletin of the American Mathematical Society, 43(1):75-86, October 2005. URL: https://doi.org/10.1090/S0273-0979-05-01088-8.
  23. Silviu Maniu, Pierre Senellart, and Suraj Jog. An experimental study of the treewidth of real-world graph data. In Pablo Barceló and Marco Calautti, editors, 22nd International Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal, volume 127 of LIPIcs, pages 12:1-12:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICDT.2019.12.
  24. Neil Robertson and Paul D. Seymour. Graph minors. IV. tree-width and well-quasi-ordering. J. Comb. Theory, Ser. B, 48(2):227-254, 1990. URL: https://doi.org/10.1016/0095-8956(90)90120-O.
  25. Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics and visualization. In Blai Bonet and Sven Koenig, editors, Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA, pages 4292-4293. AAAI Press, 2015. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9553.