Consider a sequence s_1,...,s_n of points in the plane. We want to find all maximal subsequences with a given hereditary property P: find for all indices i the largest index j^*(i) such that s_i,...,s_{j^*(i)} has property P. We provide a general methodology that leads to the following specific results: - In O(n log^2 n) time we can find all maximal subsequences with diameter at most 1. - In O(n log n loglog n) time we can find all maximal subsequences whose convex hull has area at most 1. - In O(n) time we can find all maximal subsequences that define monotone paths in some (subpath-dependent) direction. The same methodology works for graph planarity, as follows. Consider a sequence of edges e_1,...,e_n over a vertex set V. In O(n log n) time we can find, for all indices i, the largest index j^*(i) such that (V,{e_i,..., e_{j^*(i)}}) is planar.
@InProceedings{bokal_et_al:LIPIcs.SOCG.2015.240, author = {Bokal, Drago and Cabello, Sergio and Eppstein, David}, title = {{Finding All Maximal Subsequences with Hereditary Properties}}, booktitle = {31st International Symposium on Computational Geometry (SoCG 2015)}, pages = {240--254}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-83-5}, ISSN = {1868-8969}, year = {2015}, volume = {34}, editor = {Arge, Lars and Pach, J\'{a}nos}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.240}, URN = {urn:nbn:de:0030-drops-51132}, doi = {10.4230/LIPIcs.SOCG.2015.240}, annote = {Keywords: convex hull, diameter, monotone path, sequence of points, trajectory} }
Feedback for Dagstuhl Publishing