Document

# On the Shadow Simplex Method for Curved Polyhedra

## File

LIPIcs.SOCG.2015.345.pdf
• Filesize: 0.49 MB
• 15 pages

## Cite As

Daniel Dadush and Nicolai Hähnle. On the Shadow Simplex Method for Curved Polyhedra. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 345-359, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)
https://doi.org/10.4230/LIPIcs.SOCG.2015.345

## Abstract

We study the simplex method over polyhedra satisfying certain "discrete curvature" lower bounds, which enforce that the boundary always meets vertices at sharp angles. Motivated by linear programs with totally unimodular constraint matrices, recent results of Bonifas et al. (SOCG 2012), Brunsch and Röglin (ICALP 2013), and Eisenbrand and Vempala (2014) have improved our understanding of such polyhedra. We develop a new type of dual analysis of the shadow simplex method which provides a clean and powerful tool for improving all previously mentioned results. Our methods are inspired by the recent work of Bonifas and the first named author, who analyzed a remarkably similar process as part of an algorithm for the Closest Vector Problem with Preprocessing. For our first result, we obtain a constructive diameter bound of O((n^2 / delta) ln (n / delta)) for n-dimensional polyhedra with curvature parameter delta in (0, 1]. For the class of polyhedra arising from totally unimodular constraint matrices, this implies a bound of O(n^3 ln n). For linear optimization, given an initial feasible vertex, we show that an optimal vertex can be found using an expected O((n^3 / delta) ln (n / delta)) simplex pivots, each requiring O(mn) time to compute. An initial feasible solution can be found using O((mn^3 / delta) ln (n / delta)) pivot steps.
##### Keywords
• Optimization
• Linear Programming
• Simplex Method
• Diameter of Polyhedra

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Karim Alexander Adiprasito and Bruno Benedetti. The Hirsch conjecture holds for normal flag complexes. Arxiv Report 1303.3598, 2014.
2. M. L. Balinski. The Hirsch conjecture for dual transportation polyhedra. Math. Oper. Res., 9(4):629-633, 1984.
3. David Barnette. An upper bound for the diameter of a polytope. Discrete Math., 10:9-13, 1974.
4. Nicolas Bonifas, Marco Di Summa, Friedrich Eisenbrand, Nicolai Hähnle, and Martin Niemeier. On sub-determinants and the diameter of polyhedra. Discrete Comput. Geom., 52(1):102-115, 2014. Preliminary version in SOCG 12.
5. Karl-Heinz Borgwardt. The simplex method: A probabilistic analysis, volume 1 of Algorithms and Combinatorics: Study and Research Texts. Springer-Verlag, Berlin, 1987.
6. Graham Brightwell, Jan van den Heuvel, and Leen Stougie. A linear bound on the diameter of the transportation polytope. Combinatorica, 26(2):133-139, 2006.
7. Tobias Brunsch and Heiko Röglin. Finding short paths on polytopes by the shadow vertex algorithm. In Automata, languages, and programming. Part I, volume 7965 of Lecture Notes in Comput. Sci., pages 279-290. Springer, Heidelberg, 2013.
8. Daniel Dadush and Nicolas Bonifas. Short paths on the voronoi graph and closest vector problem with preprocessing. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 295-314. SIAM, 2015.
9. Daniel Dadush and Nicolai Hähnle. On the shadow simplex method for curved polyhedra (draft of full paper). Arxiv Report 1412.6705, 2014.
10. Jesús A. De Loera, Edward D. Kim, Shmuel Onn, and Francisco Santos. Graphs of transportation polytopes. J. Combin. Theory Ser. A, 116(8):1306-1325, 2009.
11. Martin Dyer and Alan Frieze. Random walks, totally unimodular matrices, and a randomised dual simplex algorithm. Math. Programming, 64(1, Ser. A):1-16, 1994.
12. Friedrich Eisenbrand and Santosh Vempala. Geometric random edge. Arxiv Report 1404.1568, 2014.
13. Gil Kalai. The diameter of graphs of convex polytopes and f-vector theory. In Applied geometry and discrete mathematics, volume 4 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 387-411. Amer. Math. Soc., Providence, RI, 1991.
14. Gil Kalai and Daniel J. Kleitman. A quasi-polynomial bound for the diameter of graphs of polyhedra. Bull. Amer. Math. Soc. (N.S.), 26(2):315-316, 1992.
15. D. G. Larman. Paths of polytopes. Proc. London Math. Soc. (3), 20:161-178, 1970.
16. Benjamin Matschke, Francisco Santos, and Christophe Weibel. The width of 5-dimensional prismatoids. Arxiv Report 1202.4701, 2013.
17. Denis Naddef. The Hirsch conjecture is true for (0,1)-polytopes. Math. Programming, 45(1, Ser. B):109-110, 1989.
18. Francisco Santos. A counterexample to the Hirsch conjecture. Ann. of Math. (2), 176(1):383-412, 2012.
19. Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. J. ACM, 51(3):385-463 (electronic), 2004.
20. Michael J. Todd. An improved Kalai-Kleitman bound for the diameter of a polyhedron. Arxiv Report 1402.3579, 2014.
21. Roman Vershynin. Beyond Hirsch conjecture: walks on random polytopes and smoothed complexity of the simplex method. SIAM J. Comput., 39(2):646-678, 2009.
X

Feedback for Dagstuhl Publishing