Document

Computing Teichmüller Maps between Polygons

File

LIPIcs.SOCG.2015.615.pdf
• Filesize: 0.63 MB
• 15 pages

Cite As

Mayank Goswami, Xianfeng Gu, Vamsi P. Pingali, and Gaurish Telang. Computing Teichmüller Maps between Polygons. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 615-629, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)
https://doi.org/10.4230/LIPIcs.SOCG.2015.615

Abstract

By the Riemann mapping theorem, one can bijectively map the interior of an n-gon P to that of another n-gon Q conformally (i.e., in an angle preserving manner). However, when this map is extended to the boundary it need not necessarily map the vertices of P to those of Q. For many applications it is important to find the "best" vertex-preserving mapping between two polygons, i.e., one that minimizes the maximum angle distortion (the so-called dilatation). Such maps exist, are unique, and are known as extremal quasiconformal maps or Teichmüller maps. There are many efficient ways to approximate conformal maps, and the recent breakthrough result by Bishop computes a (1+epsilon)-approximation of the Riemann map in linear time. However, only heuristics have been studied in the case of Teichmüller maps. We present two results in this paper. One studies the problem in the continuous setting and another in the discrete setting. In the continuous setting, we solve the problem of finding a finite time procedure for approximating Teichmüller maps. Our construction is via an iterative procedure that is proven to converge in O(poly(1/epsilon)) iterations to a (1+epsilon)-approximation of the Teichmuller map. Our method uses a reduction of the polygon mapping problem to the marked sphere problem, thus solving a more general problem. In the discrete setting, we reduce the problem of finding an approximation algorithm for computing Teichmüller maps to two basic subroutines, namely, computing discrete 1) compositions and 2) inverses of discretely represented quasiconformal maps. Assuming finite-time solvers for these subroutines we provide a (1+epsilon)-approximation algorithm.
Keywords
• Teichmüller maps
• Surface registration
• Extremal Quasiconformal maps
• Computer vision

Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

References

1. L. V. Ahlfors. Lectures on quasiconformal mappings, volume 38 of University Lecture Series. American Mathematical Society, Providence, RI, second edition, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard.
2. C. Bishop. Conformal mapping in linear time. Discrete and Comput. Geometry, 44(2):330-428, 2010.
3. Christopher Bishop. Analysis of conformal and quasiconformal maps. Results from prior NSF support, 2012. URL: http://www.math.sunysb.edu/~bishop/vita/nsf12.pdf.
4. C. Carathéodory. Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis. Mathematische Annalen, 73(2):305-320, 1913.
5. P. Daripa and M. Goswami, 2014. Private communication.
6. Prabir Daripa. A fast algorithm to solve the beltrami equation with applications to quasiconformal mappings. Journal of Computational Physics, 106(2):355-365, 1993.
7. T. A. Driscoll and L. N. Trefethen. Schwarz-Christoffel Mapping. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2002.
8. T. A. Driscoll and S. A. Vavasis. Numerical conformal mapping using cross-ratios and delaunay triangulation. SIAM J. Sci. Comput, 19:1783-1803, 1998.
9. D. Gaidashev and D. Khmelev. On numerical algorithms for the solution of a beltrami equation. SIAM Journal on Numerical Analysis, 46(5):2238-2253, 2008.
10. F. P. Gardiner and N. Lakic. Quasiconformal Teichmüler theory. American Mathematical Society, 1999.
11. M. Goswami, X. Gu, V. Pingali, and G. Telang. Computing Teichmüller maps between polygons. arXiv:1401.6395 - http://arxiv.org/abs/1401.6395, 2014.
12. H. Grötzsch. Über die Verzerrung bei nichtkonformen schlichten Abbildungen mehrfach zusammenhngender Bereiche. Leipz. Ber., 82:69-80, 1930.
13. X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S. T. Yau. Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Transactions on Medical Imaging, 23(7):949-958, 2004.
14. X. Gu and S.T. Yau. Global surface conformal parameterization. In Symposium on Geometry Processing (SGP'03), volume 43, pages 127-137, 2003.
15. J. H. Hubbard. Teichmüller theory and applications to geometry, topology, and dynamics. Matrix Editions, 2006.
16. Ldmm - the large deformation diffeomorphic metric mapping tool. URL: http://cis.jhu.edu/software/lddmm-volume/tutorial.php.
17. L. Lui, K. Lam, S. Yau, and X. Gu. Teichmüller Mapping (T-Map) and Its Applications to Landmark Matching Registration. SIAM Journal on Imaging Sciences, 7(1):391-426, 2014.
18. L. M. Lui, Xianfeng Gu, and Shing Tung Yau. Convergence of an iterative // algorithm for Teichmüller maps via generalized harmonic maps. arXiv:1307.2679 - http://arxiv.org/abs/1307.2679, 2014.
19. Lok Ming Lui, Tsz Wai Wong, Wei Zeng, Xianfeng Gu, Paul M. Thompson, Tony F. Chan, and Shing-Tung Yau. Optimization of surface registrations using beltrami holomorphic flow. Journal of Scientific Computing, 50(3):557-585, 2012.
20. P.M. Pardalos and M.G.C. Resende. Handbook of applied optimization, volume 1. Oxford University Press New York, 2002.
21. J. Ruppert. A delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms, 18(3):548-585, 1995.
22. O. Teichmüller. Extremale quasikonforme Abbildungen und quadratische Differentiale. Preuss. Akad. Math.-Nat., 1, 1940.
23. O. Teichmüller. Bestimmung der extremalen quasikonformen Abbildungen bei geschlossenen orientierten Riemannschen Flächen. Preuss. Akad. Math.-Nat., 4, 1943.
24. Y. Wang, M. Gupta, S. Zhang, S. Wang, X. Gu, D. Samaras, and P. Huang. High Resolution Tracking of Non-Rigid Motion of Densely Sampled 3D Data Using Harmonic Maps. International Journal of Computer Vision, 76(3):283-300, 2008.
25. Y. Wang, J. Shi, X. Yin, X. Gu, T. F. Chan, S. T. Yau, A. W. Toga, and P. M. Thompson. Brain surface conformal parameterization with the ricci flow. IEEE Transactions on Medical Imaging, 31(2):251-264, 2012.
26. O. Weber, A. Myles, and D. Zorin. Computing extremal quasiconformal maps. Comp. Graph. Forum, 31(5):1679-1689, 2012.
X

Feedback for Dagstuhl Publishing