Document Open Access Logo

Topological Analysis of Scalar Fields with Outliers

Authors Mickaël Buchet, Frédéric Chazal, Tamal K. Dey, Fengtao Fan, Steve Y. Oudot, Yusu Wang



PDF
Thumbnail PDF

File

LIPIcs.SOCG.2015.827.pdf
  • Filesize: 0.51 MB
  • 15 pages

Document Identifiers

Author Details

Mickaël Buchet
Frédéric Chazal
Tamal K. Dey
Fengtao Fan
Steve Y. Oudot
Yusu Wang

Cite AsGet BibTex

Mickaël Buchet, Frédéric Chazal, Tamal K. Dey, Fengtao Fan, Steve Y. Oudot, and Yusu Wang. Topological Analysis of Scalar Fields with Outliers. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 827-841, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)
https://doi.org/10.4230/LIPIcs.SOCG.2015.827

Abstract

Given a real-valued function f defined over a manifold M embedded in R^d, we are interested in recovering structural information about f from the sole information of its values on a finite sample P. Existing methods provide approximation to the persistence diagram of f when geometric noise and functional noise are bounded. However, they fail in the presence of aberrant values, also called outliers, both in theory and practice. We propose a new algorithm that deals with outliers. We handle aberrant functional values with a method inspired from the k-nearest neighbors regression and the local median filtering, while the geometric outliers are handled using the distance to a measure. Combined with topological results on nested filtrations, our algorithm performs robust topological analysis of scalar fields in a wider range of noise models than handled by current methods. We provide theoretical guarantees and experimental results on the quality of our approximation of the sampled scalar field.
Keywords
  • Persistent Homology
  • Topological Data Analysis
  • Scalar Field Analysis
  • Nested Rips Filtration
  • Distance to a Measure

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail