Topological Analysis of Scalar Fields with Outliers

Authors Mickaël Buchet, Frédéric Chazal, Tamal K. Dey, Fengtao Fan, Steve Y. Oudot, Yusu Wang

Thumbnail PDF


  • Filesize: 0.51 MB
  • 15 pages

Document Identifiers

Author Details

Mickaël Buchet
Frédéric Chazal
Tamal K. Dey
Fengtao Fan
Steve Y. Oudot
Yusu Wang

Cite AsGet BibTex

Mickaël Buchet, Frédéric Chazal, Tamal K. Dey, Fengtao Fan, Steve Y. Oudot, and Yusu Wang. Topological Analysis of Scalar Fields with Outliers. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 827-841, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Given a real-valued function f defined over a manifold M embedded in R^d, we are interested in recovering structural information about f from the sole information of its values on a finite sample P. Existing methods provide approximation to the persistence diagram of f when geometric noise and functional noise are bounded. However, they fail in the presence of aberrant values, also called outliers, both in theory and practice. We propose a new algorithm that deals with outliers. We handle aberrant functional values with a method inspired from the k-nearest neighbors regression and the local median filtering, while the geometric outliers are handled using the distance to a measure. Combined with topological results on nested filtrations, our algorithm performs robust topological analysis of scalar fields in a wider range of noise models than handled by current methods. We provide theoretical guarantees and experimental results on the quality of our approximation of the sampled scalar field.
  • Persistent Homology
  • Topological Data Analysis
  • Scalar Field Analysis
  • Nested Rips Filtration
  • Distance to a Measure


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. M. Buchet, F. Chazal, T. K. Dey, F. Fan, S. Y. Oudot, and Y. Wang. Topological analysis of scalar fields with outliers. arXiv preprint arXiv:1412.1680, 2014. Google Scholar
  2. M. Buchet, F. Chazal, S. Oudot, and D. R. Sheehy. Efficient and robust persistent homology for measures. In Proceedings of the 26th ACM-SIAM symposium on Discrete algorithms. SIAM, 2015. Google Scholar
  3. F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Oudot. Proximity of persistence modules and their diagrams. In Proc. 25th ACM Sympos. on Comput. Geom., pages 237-246, 2009. Google Scholar
  4. F. Chazal, D. Cohen-Steiner, and Q. Mérigot. Geometric inference for probability measures. Foundations of Computational Mathematics, 11(6):733-751, 2011. Google Scholar
  5. F. Chazal, V. de Silva, M. Glisse, and S. Oudot. The structure and stability of persistence modules, 2013. arXiv:1207.3674. Google Scholar
  6. F. Chazal, L. J. Guibas, S. Y. Oudot, and P. Skraba. Scalar field analysis over point cloud data. Discrete & Computational Geometry, 46(4):743-775, 2011. Google Scholar
  7. F. Chazal and S. Y. Oudot. Towards persistence-based reconstruction in euclidean spaces. In Proceedings of the twenty-fourth annual symposium on Computational geometry, pages 232-241. ACM, 2008. Google Scholar
  8. D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete & Computational Geometry, 37(1):103-120, 2007. Google Scholar
  9. T. K. Dey, J. Sun, and Y. Wang. Approximating cycles in a shortest basis of the first homology group from point data. Inverse Problems, 27(12):124004, 2011. Google Scholar
  10. H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. Amer. Math. Soc., Providence, Rhode Island, 2009. Google Scholar
  11. H. Federer. Curvature measures. Transactions of the American Mathematical Society, pages 418-491, 1959. Google Scholar
  12. L. Guibas, D. Morozov, and Q. Mérigot. Witnessed k-distance. Discrete & Computational Geometry, 49(1):22-45, 2013. Google Scholar
  13. L. Györfi. A distribution-free theory of nonparametric regression. Springer, 2002. Google Scholar
  14. J. Kloke and G. Carlsson. Topological de-noising: Strengthening the topological signal. arXiv preprint arXiv:0910.5947, 2009. Google Scholar
  15. S. Kpotufe. k-nn regression adapts to local intrinsic dimension. arXiv preprint arXiv:1110.4300, 2011. Google Scholar
  16. A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete & Computational Geometry, 33(2):249-274, 2005. Google Scholar