LIPIcs.STACS.2008.1317.pdf
- Filesize: 175 kB
- 12 pages
There exist very lucid explanations of the combinatorial origins of rational and algebraic functions, in particular with respect to regular and context free languages. In the search to understand how to extend these natural correspondences, we find that the shuffle product models many key aspects of D-finite generating functions, a class which contains algebraic. We consider several different takes on the shuffle product, shuffle closure, and shuffle grammars, and give explicit generating function consequences. In the process, we define a grammar class that models D-finite generating functions.
Feedback for Dagstuhl Publishing