Deterministically Isolating a Perfect Matching in Bipartite Planar Graphs

Authors Samir Datta, Raghav Kulkarni, Sambuddha Roy

Thumbnail PDF


  • Filesize: 160 kB
  • 12 pages

Document Identifiers

Author Details

Samir Datta
Raghav Kulkarni
Sambuddha Roy

Cite AsGet BibTex

Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically Isolating a Perfect Matching in Bipartite Planar Graphs. In 25th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 1, pp. 229-240, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


We present a deterministic way of assigning small (log bit) weights to the edges of a bipartite planar graph so that the minimum weight perfect matching becomes unique. The isolation lemma as described in (Mulmuley et al. 1987) achieves the same for general graphs using a randomized weighting scheme, whereas we can do it deterministically when restricted to bipartite planar graphs. As a consequence, we reduce both decision and construction versions of the matching problem to testing whether a matrix is singular, under the promise that its determinant is $0$ or $1$, thus obtaining a highly parallel SPL algorithm for bipartite planar graphs. This improves the earlier known bounds of non-uniform SPL by (Allender et al. 1999) and $NC^2$ by (Miller and Naor 1995, Mahajan and Varadarajan 2000). It also rekindles the hope of obtaining a deterministic parallel algorithm for constructing a perfect matching in non-bipartite planar graphs, which has been open for a long time. Our techniques are elementary and simple.


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads