Polynomial Kernelizations for MIN F^+Pi_1 and MAX NP

Author Stefan Kratsch



PDF
Thumbnail PDF

File

LIPIcs.STACS.2009.1851.pdf
  • Filesize: 196 kB
  • 12 pages

Document Identifiers

Author Details

Stefan Kratsch

Cite AsGet BibTex

Stefan Kratsch. Polynomial Kernelizations for MIN F^+Pi_1 and MAX NP. In 26th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 3, pp. 601-612, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)
https://doi.org/10.4230/LIPIcs.STACS.2009.1851

Abstract

The relation of constant-factor approximability to fixed-parameter tractability and kernelization is a long-standing open question. We prove that two large classes of constant-factor approximable problems, namely~$\textsc{MIN F}^+\Pi_1$ and~$\textsc{MAX NP}$, including the well-known subclass~$\textsc{MAX SNP}$, admit polynomial kernelizations for their natural decision versions. This extends results of Cai and Chen (JCSS 1997), stating that the standard parameterizations of problems in~$\textsc{MAX SNP}$ and~$\textsc{MIN F}^+\Pi_1$ are fixed-parameter tractable, and complements recent research on problems that do not admit polynomial kernelizations (Bodlaender et al.\ ICALP 2008).
Keywords
  • Parameterized complexity
  • Kernelization
  • Approximation algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail