Reachability and shortest path problems are \NLC\ for general graphs. They are known to be in \Log\ for graphs of tree-width $2$ \cite{JT07}. However, for graphs of tree-width larger than $2$, no bound better than \NL\ is known. In this paper, we improve these bounds for $k$-trees, where $k$ is a constant. In particular, the main results of our paper are log-space algorithms for reachability in directed $k$-trees, and for computation of shortest and longest paths in directed acyclic $k$-trees. Besides the path problems mentioned above, we consider the problem of deciding whether a $k$-tree has a perfect macthing (decision version), and if so, finding a perfect matching (search version), and prove that these problems are \Log-complete. These problems are known to be in \Ptime\ and in \RNC\ for general graphs, and in \SPL\ for planar bipartite graphs \cite{DKR08}. Our results settle the complexity of these problems for the class of $k$-trees. The results are also applicable for bounded tree-width graphs, when a tree-decomposition is given as input. The technique central to our algorithms is a careful implementation of divide-and-conquer approach in log-space, along with some ideas from \cite{JT07} and \cite{LMR07}.
@InProceedings{das_et_al:LIPIcs.STACS.2010.2456, author = {Das, Bireswar and Datta, Samir and Nimbhorkar, Prajakta}, title = {{Log-space Algorithms for Paths and Matchings in k-trees}}, booktitle = {27th International Symposium on Theoretical Aspects of Computer Science}, pages = {215--226}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-16-3}, ISSN = {1868-8969}, year = {2010}, volume = {5}, editor = {Marion, Jean-Yves and Schwentick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2456}, URN = {urn:nbn:de:0030-drops-24563}, doi = {10.4230/LIPIcs.STACS.2010.2456}, annote = {Keywords: k-trees, reachability, matching, log-space} }
Feedback for Dagstuhl Publishing