Dispersion in Unit Disks

Authors Adrian Dumitrescu, Minghui Jiang

Thumbnail PDF


  • Filesize: 425 kB
  • 12 pages

Document Identifiers

Author Details

Adrian Dumitrescu
Minghui Jiang

Cite AsGet BibTex

Adrian Dumitrescu and Minghui Jiang. Dispersion in Unit Disks. In 27th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 5, pp. 299-310, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


We present two new approximation algorithms with (improved) constant ratios for selecting $n$ points in $n$ unit disks such that the minimum pairwise distance among the points is maximized. (I) A very simple $O(n \log{n})$-time algorithm with ratio $0.5110$ for disjoint unit disks. In combination with an algorithm of Cabello~\cite{Ca07}, it yields a $O(n^2)$-time algorithm with ratio of $0.4487$ for dispersion in $n$ not necessarily disjoint unit disks. (II) A more sophisticated LP-based algorithm with ratio $0.6495$ for disjoint unit disks that uses a linear number of variables and constraints, and runs in polynomial time. The algorithm introduces a novel technique which combines linear programming and projections for approximating distances. The previous best approximation ratio for disjoint unit disks was $\frac{1}{2}$. Our results give a partial answer to an open question raised by Cabello~\cite{Ca07}, who asked whether $\frac{1}{2}$ could be improved.
  • Dispersion problem
  • linear programming
  • approximation algorithm


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail