In 2005 Li~et~al. gave a \(\phi\)-competitive deterministic online algorithm for scheduling of packets with agreeable deadlines~\cite{DBLP:conf/soda/LiSS05} with a very interesting analysis. This is known to be optimal due to a lower bound by Hajek~\cite{Hajek-det-lb}. We claim that the algorithm by Li~et~al. can be slightly simplified, while retaining its competitive ratio. Then we introduce randomness to the modified algorithm and argue that the competitive ratio against oblivious adversary is at most (\frac{4}{3}\). Note that this still leaves a gap between the best known lower bound of \(\frac{5}{4}\) by Chin~et~al.~\cite{DBLP:journals/algorithmica/ChinF03} for randomized algorithms against oblivious adversary.
@InProceedings{jez:LIPIcs.STACS.2010.2479, author = {Jez, Lukasz}, title = {{Randomized Algorithm for Agreeable Deadlines Packet Scheduling}}, booktitle = {27th International Symposium on Theoretical Aspects of Computer Science}, pages = {489--500}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-16-3}, ISSN = {1868-8969}, year = {2010}, volume = {5}, editor = {Marion, Jean-Yves and Schwentick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2479}, URN = {urn:nbn:de:0030-drops-24795}, doi = {10.4230/LIPIcs.STACS.2010.2479}, annote = {Keywords: Online algorithms, scheduling, buffer management} }
Feedback for Dagstuhl Publishing