In the constraint satisfaction problem ($CSP$), the aim is to find an assignment of values to a set of variables subject to specified constraints. In the minimum cost homomorphism problem ($MinHom$), one is additionally given weights $c_{va}$ for every variable $v$ and value $a$, and the aim is to find an assignment $f$ to the variables that minimizes $\sum_{v} c_{vf(v)}$. Let $MinHom\left( \Gamma \right)$ denote the $MinHom$ problem parameterized by the set of predicates allowed for constraints. $MinHom\left( \Gamma \right)$ is related to many well-studied combinatorial optimization problems, and concrete applications can be found in, for instance, defence logistics and machine learning. We show that $MinHom\left( \Gamma \right)$ can be studied by using algebraic methods similar to those used for CSPs. With the aid of algebraic techniques, we classify the computational complexity of $MinHom\left( \Gamma \right)$ for all choices of $\Gamma$. Our result settles a general dichotomy conjecture previously resolved only for certain classes of directed graphs, [Gutin, Hell, Rafiey, Yeo, European J. of Combinatorics, 2008].
@InProceedings{takhanov:LIPIcs.STACS.2010.2493, author = {Takhanov, Rustem}, title = {{A Dichotomy Theorem for the General Minimum Cost Homomorphism Problem}}, booktitle = {27th International Symposium on Theoretical Aspects of Computer Science}, pages = {657--668}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-16-3}, ISSN = {1868-8969}, year = {2010}, volume = {5}, editor = {Marion, Jean-Yves and Schwentick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2493}, URN = {urn:nbn:de:0030-drops-24936}, doi = {10.4230/LIPIcs.STACS.2010.2493}, annote = {Keywords: Minimum cost homomorphisms problem, relational clones, constraint satisfaction problem, perfect graphs, supervised learning} }
Feedback for Dagstuhl Publishing