On Isomorphism Testing of Groups with Normal Hall Subgroups

Authors Youming Qiao, Jayalal Sarma M.N., Bangsheng Tang

Thumbnail PDF


  • Filesize: 0.67 MB
  • 12 pages

Document Identifiers

Author Details

Youming Qiao
Jayalal Sarma M.N.
Bangsheng Tang

Cite AsGet BibTex

Youming Qiao, Jayalal Sarma M.N., and Bangsheng Tang. On Isomorphism Testing of Groups with Normal Hall Subgroups. In 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 9, pp. 567-578, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


A normal Hall subgroup $N$ of a group $G$ is a normal subgroup with its order coprime with its index. Schur-Zassenhaus theorem states that every normal Hall subgroup has a complement subgroup, that is a set of coset representatives H which also forms a subgroup of G. In this paper, we present a framework to test isomorphism of groups with at least one normal Hall subgroup, when groups are given as multiplication tables. To establish the framework, we first observe that a proof of Schur-Zassenhaus theorem is constructive, and formulate a necessary and sufficient condition for testing isomorphism in terms of the associated actions of the semidirect products, and isomorphisms of the normal parts and complement parts. We then focus on the case when the normal subgroup is abelian. Utilizing basic facts of representation theory of finite groups and a technique by Le Gall [STACS 2009], we first get an efficient isomorphism testing algorithm when the complement has bounded number of generators. For the case when the complement subgroup is elementary abelian, which does not necessarily have bounded number of generators, we obtain a polynomial time isomorphism testing algorithm by reducing to generalized code isomorphism problem. A solution to the latter can be obtained by a mild extension of the singly exponential (in the number of coordinates) time algorithm for code isomorphism problem developed recently by Babai. Enroute to obtaining the above reduction, we study the following computational problem in representation theory of finite groups: given two representations rho and tau of a group $H$ over Z_p^d , p a prime, determine if there exists an automorphism phi:H -> H, such that the induced representation rho_phi=rho o phi and tau are equivalent, in time poly(|H|,p^d).
  • Group Isomorphism Problem
  • Normal Hall Subgroups
  • Computational Complexity


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads