On the computational complexity of Ham-Sandwich cuts, Helly sets, and related problems

Authors Christian Knauer, Hans Raj Tiwary, Daniel Werner

Thumbnail PDF


  • Filesize: 0.64 MB
  • 12 pages

Document Identifiers

Author Details

Christian Knauer
Hans Raj Tiwary
Daniel Werner

Cite AsGet BibTex

Christian Knauer, Hans Raj Tiwary, and Daniel Werner. On the computational complexity of Ham-Sandwich cuts, Helly sets, and related problems. In 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 9, pp. 649-660, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


We study several canonical decision problems arising from some well-known theorems from combinatorial geometry. Among others, we show that computing the minimum size of a Caratheodory set and a Helly set and certain decision versions of the hs cut problem are W[1]-hard (and NP-hard) if the dimension is part of the input. This is done by fpt-reductions (which are actually ptime-reductions) from the d-Sum problem. Our reductions also imply that the problems we consider cannot be solved in time n^{o(d)} (where n is the size of the input), unless the Exponential-Time Hypothesis (ETH) is false. The technique of embedding d-Sum into a geometric setting is conceptually much simpler than direct fpt-reductions from purely combinatorial W[1]-hard problems (like the clique problem) and has great potential to show (parameterized) hardness and (conditional) lower bounds for many other problems.
  • computational geometry
  • combinatorial geometry
  • ham-sandwich cuts
  • parameterized complexity.


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads