Linear-Space Data Structures for Range Mode Query in Arrays

Authors Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, Bryan T. Wilkinson



PDF
Thumbnail PDF

File

LIPIcs.STACS.2012.290.pdf
  • Filesize: 0.59 MB
  • 12 pages

Document Identifiers

Author Details

Timothy M. Chan
Stephane Durocher
Kasper Green Larsen
Jason Morrison
Bryan T. Wilkinson

Cite AsGet BibTex

Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and Bryan T. Wilkinson. Linear-Space Data Structures for Range Mode Query in Arrays. In 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 14, pp. 290-301, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)
https://doi.org/10.4230/LIPIcs.STACS.2012.290

Abstract

A mode of a multiset S is an element a in S of maximum multiplicity; that is, a occurs at least as frequently as any other element in S. Given an array A[1:n] of n elements, we consider a basic problem: constructing a static data structure that efficiently answers range mode queries on A. Each query consists of an input pair of indices (i, j) for which a mode of A[i:j] must be returned. The best previous data structure with linear space, by Krizanc, Morin, and Smid (ISAAC 2003), requires O(sqrt(n) loglog n) query time. We improve their result and present an O(n)-space data structure that supports range mode queries in O(sqrt(n / log n)) worst-case time. Furthermore, we present strong evidence that a query time significantly below sqrt(n) cannot be achieved by purely combinatorial techniques; we show that boolean matrix multiplication of two sqrt(n) by sqrt(n) matrices reduces to n range mode queries in an array of size O(n). Additionally, we give linear-space data structures for orthogonal range mode in higher dimensions (queries in near O(n^(1-1/2d)) time) and for halfspace range mode in higher dimensions (queries in O(n^(1-1/d^2)) time).
Keywords
  • mode
  • range query
  • data structure
  • linear space
  • array

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail