One of the most important algorithmic meta-theorems is a famous result by Courcelle, which states that any graph problem definable in monadic second-order logic with edge-set quantifications (MSO2) is decidable in linear time on any class of graphs of bounded tree-width. In the parlance of parameterized complexity, this means that MSO2 model-checking is fixed-parameter tractable with respect to the tree-width as parameter. Recently, Kreutzer and Tazari proved a corresponding complexity lower-bound---that MSO2 model-checking is not even in XP wrt the formula size as parameter for graph classes that are subgraph-closed and whose tree-width is poly-logarithmically unbounded. Of course, this is not an unconditional result but holds modulo a certain complexity-theoretic assumption, namely, the Exponential Time Hypothesis (ETH). In this paper we present a closely related result. We show that even MSO1 model-checking with a fixed set of vertex labels, but without edge-set quantifications, is not in XP wrt the formula size as parameter for graph classes which are subgraph-closed and whose tree-width is poly-logarithmically unbounded unless the non-uniform ETH fails. In comparison to Kreutzer and Tazari, (1) we use a stronger prerequisite, namely non-uniform instead of uniform ETH, to avoid the effectiveness assumption and the construction of certain obstructions used in their proofs; and (2) we assume a different set of problems to be efficiently decidable, namely MSO1-definable properties on vertex labeled graphs instead of MSO2-definable properties on unlabeled graphs. Our result has an interesting consequence in the realm of digraph width measures: Strengthening a recent result, we show that no subdigraph-monotone measure can be algorithmically useful, unless it is within a poly-logarithmic factor of (undirected) tree-width.
@InProceedings{ganian_et_al:LIPIcs.STACS.2012.326, author = {Ganian, Robert and Hlineny, Petr and Langer, Alexander and Obdr\v{z}\'{a}lek, Jan and Rossmanith, Peter and Sikdar, Somnath}, title = {{Lower Bounds on the Complexity of MSO\underline1 Model-Checking}}, booktitle = {29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)}, pages = {326--337}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-35-4}, ISSN = {1868-8969}, year = {2012}, volume = {14}, editor = {D\"{u}rr, Christoph and Wilke, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2012.326}, URN = {urn:nbn:de:0030-drops-34185}, doi = {10.4230/LIPIcs.STACS.2012.326}, annote = {Keywords: Monadic Second-Order Logic, Treewidth, Lower Bounds, Exponential Time Hypothesis, Parameterized Complexity} }
Feedback for Dagstuhl Publishing