On the treewidth and related parameters of random geometric graphs

Authors Dieter Mitsche, Guillem Perarnau



PDF
Thumbnail PDF

File

LIPIcs.STACS.2012.408.pdf
  • Filesize: 0.85 MB
  • 12 pages

Document Identifiers

Author Details

Dieter Mitsche
Guillem Perarnau

Cite AsGet BibTex

Dieter Mitsche and Guillem Perarnau. On the treewidth and related parameters of random geometric graphs. In 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 14, pp. 408-419, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)
https://doi.org/10.4230/LIPIcs.STACS.2012.408

Abstract

We give asymptotically exact values for the treewidth tw(G) of a random geometric graph G(n,r) in [0,sqrt(n)]^2. More precisely, we show that there exists some c_1 > 0, such that for any constant 0 < r < c_1, tw(G)=Theta(log(n)/loglog(n)), and also, there exists some c_2 > c_1, such that for any r=r(n)> c_2, tw(G)=Theta(r sqrt(n)). Our proofs show that for the corresponding values of r the same asymptotic bounds also hold for the pathwidth and treedepth of a random geometric graph.
Keywords
  • Random geometric graphs
  • treewidth
  • treedepth

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail