We prove that every simple polygon can be made as a (2D) pop-up card/book that opens to any desired angle between 0 and 360°. More precisely, given a simple polygon attached to the two walls of the open pop-up, our polynomial-time algorithm subdivides the polygon into a single-degree-of-freedom linkage structure, such that closing the pop-up flattens the linkage without collision. This result solves an open problem of Hara and Sugihara from 2009. We also show how to obtain a more efficient construction for the special case of orthogonal polygons, and how to make 3D orthogonal polyhedra, from pop-ups that open to 90°, 180°, 270°, or 360°.
@InProceedings{abel_et_al:LIPIcs.STACS.2013.269, author = {Abel, Zachary and Demaine, Erik D. and Demaine, Martin L. and Eisenstat, Sarah and Lubiw, Anna and Schulz, Andr\'{e} and Souvaine, Diane L. and Viglietta, Giovanni and Winslow, Andrew}, title = {{Algorithms for Designing Pop-Up Cards}}, booktitle = {30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)}, pages = {269--280}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-50-7}, ISSN = {1868-8969}, year = {2013}, volume = {20}, editor = {Portier, Natacha and Wilke, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.269}, URN = {urn:nbn:de:0030-drops-39407}, doi = {10.4230/LIPIcs.STACS.2013.269}, annote = {Keywords: geometric folding, linkages, universality} }
Feedback for Dagstuhl Publishing