LIPIcs.STACS.2013.305.pdf
- Filesize: 0.53 MB
- 12 pages
We consider the quantifier alternation hierarchy within two-variable first-order logic FO^2[<,suc] over finite words with linear order and binary successor predicate. We give a single identity of omega-terms for each level of this hierarchy. This shows that for a given regular language and a non-negative integer~$m$ it is decidable whether the language is definable by a formula in FO^2[<,suc] which has at most m quantifier alternations. We also consider the alternation hierarchy of unary temporal logic TL[X,F,Y,P] defined by the maximal number of nested negations. This hierarchy coincides with the FO^2[<,suc] quantifier alternation hierarchy.
Feedback for Dagstuhl Publishing