We investigate the Matrix Powering Positivity Problem, PosMatPow: given an m X m square integer matrix M, a linear function f: Z^{m X m} -> Z with integer coefficients, and a positive integer n (encoded in binary), determine whether f(M^n) \geq 0. We show that for fixed dimensions m of 2 and 3, this problem is decidable in polynomial time.
@InProceedings{galby_et_al:LIPIcs.STACS.2015.329, author = {Galby, Esther and Ouaknine, Jo\"{e}l and Worrell, James}, title = {{On Matrix Powering in Low Dimensions}}, booktitle = {32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)}, pages = {329--340}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-78-1}, ISSN = {1868-8969}, year = {2015}, volume = {30}, editor = {Mayr, Ernst W. and Ollinger, Nicolas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.329}, URN = {urn:nbn:de:0030-drops-49240}, doi = {10.4230/LIPIcs.STACS.2015.329}, annote = {Keywords: matrix powering, complexity, Baker's theorem} }
Feedback for Dagstuhl Publishing