On the Synchronisation Problem over Cellular Automata

Author Gaétan Richard

Thumbnail PDF


  • Filesize: 0.51 MB
  • 13 pages

Document Identifiers

Author Details

Gaétan Richard

Cite AsGet BibTex

Gaétan Richard. On the Synchronisation Problem over Cellular Automata. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 66, pp. 54:1-54:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Cellular automata are a discrete, synchronous, and uniform dynamical system that give rise to a wide range of dynamical behaviours. In this paper, we investigate whether this system can achieve synchronisation. We study the cases of classical bi-infinite configurations, periodic configurations, and periodic configurations of prime period. In the two former cases, we prove that only a "degenerated" form of synchronisation - there exists a fix-point - is possible. In the latter case, we give an explicit construction of a cellular automaton for which any periodic configuration of prime period eventually converges to cycle of two uniform configurations. Our construction is based upon sophisticated tools: aperiodic NW-deterministic tilings and partitioned intervals.
  • cellular automata
  • dynamical systems
  • aperiodic tiling
  • synchronisation


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Nicolas Bacquey. Complexity classes on spatially periodic cellular automata. In Ernst W. Mayr and Natacha Portier, editors, STACS, volume 25 of LIPIcs, pages 112-124. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014. URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2014.112.
  2. Karel Čulík II. Variations of the firing squad problem and applications. Information Processing Letters, 30(3):152-157, 1989. Google Scholar
  3. Martin Delacourt. Automates cellulaires : dynamique directionnelle et asymptotique typique. PhD thesis, université de Provence, 2011. Google Scholar
  4. Martin Delacourt. Rice’s theorem for μ-limit sets of cellular automata. In Luca Aceto, Monika Henzinger, and Jirí Sgall, editors, Automata, Languages and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II, volume 6756 of Lecture Notes in Computer Science, pages 89-100. Springer, 2011. URL: http://dx.doi.org/10.1007/978-3-642-22012-8_6.
  5. Nazim Fatès. Remarks on the cellular automaton global synchronisation problem. In Jarkko Kari, editor, Cellular Automata and Discrete Complex Systems - 21st IFIP WG 1.5 International Workshop, AUTOMATA 2015, Turku, Finland, June 8-10, 2015. Proceedings, volume 9099 of Lecture Notes in Computer Science, pages 113-126. Springer, 2015. Google Scholar
  6. Péter Gács. Reliable cellular automata with self-organization. Journal of Statistical Physics, 103(1-2):45-267, 2001. URL: http://dx.doi.org/10.1023/A:1004823720305.
  7. Jarkko Kari. The nilpotency problem of one-dimensional cellular automata. SIAM Journal on Computing, 21(3):571-586, 1992. URL: http://dx.doi.org/10.1137/0221036.
  8. Jacques Mazoyer. On optimal solutions to the firing squad synchronization problem. Theoretical Computer Science, 168(2):367-404, 1996. URL: http://dx.doi.org/10.1016/S0304-3975(96)00084-9.
  9. Raphael Robinson. Undecidability and nonperiodicity for tilings of the plane. Inventiones Mathematicae, 12, 1971. URL: http://dx.doi.org/10.1007/BF01418780.
  10. John von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Champaign, IL, USA, 1966. URL: http://dx.doi.org/10.1002/asi.5090180413.
  11. Stephen Wolfram. A new kind of science. Wolfram Media Inc., Champaign, Ilinois, United States, 2002. Google Scholar