Document

# Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints

## File

LIPIcs.STACS.2019.44.pdf
• Filesize: 0.75 MB
• 15 pages

## Cite As

Dušan Knop, Michał Pilipczuk, and Marcin Wrochna. Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 44:1-44:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.STACS.2019.44

## Abstract

We consider the standard ILP Feasibility problem: given an integer linear program of the form {Ax = b, x >= 0}, where A is an integer matrix with k rows and l columns, x is a vector of l variables, and b is a vector of k integers, we ask whether there exists x in N^l that satisfies Ax = b. Each row of A specifies one linear constraint on x; our goal is to study the complexity of ILP Feasibility when both k, the number of constraints, and |A|_infty, the largest absolute value of an entry in A, are small. Papadimitriou [Christos H. Papadimitriou, 1981] was the first to give a fixed-parameter algorithm for ILP Feasibility under parameterization by the number of constraints that runs in time ((|A |_infty + |b|_infty) * k)^O(k^2). This was very recently improved by Eisenbrand and Weismantel [Friedrich Eisenbrand and Robert Weismantel, 2018], who used the Steinitz lemma to design an algorithm with running time (k |A|_infty)^{O(k)}* |b|_infty^2, which was subsequently improved by Jansen and Rohwedder [Klaus Jansen and Lars Rohwedder, 2019] to O(k |A |_infty)^k* log |b|_infty. We prove that for {0,1}-matrices A, the running time of the algorithm of Eisenbrand and Weismantel is probably optimal: an algorithm with running time 2^{o(k log k)}* (l+|{b}|_infty)^{o(k)} would contradict the Exponential Time Hypothesis (ETH). This improves previous non-tight lower bounds of Fomin et al. [Fedor V. Fomin et al., 2018]. We then consider integer linear programs that may have many constraints, but they need to be structured in a "shallow" way. Precisely, we consider the parameter {dual treedepth} of the matrix A, denoted td_D(A), which is the treedepth of the graph over the rows of A, where two rows are adjacent if in some column they simultaneously contain a non-zero entry. It was recently shown by Koutecký et al. [Martin Koutecký et al., 2018] that {ILP Feasibility} can be solved in time |A |_infty^{2^O(td_D(A))} * (k+l+log |b|_infty)^O(1). We present a streamlined proof of this fact and prove that, again, this running time is probably optimal: even assuming that all entries of A and {b} are in {-1,0,1}, the existence of an algorithm with running time 2^{2^o(td_D(A))} * (k+l)^O(1) would contradict the ETH.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Integer programming
• Theory of computation → Fixed parameter tractability
##### Keywords
• integer linear programming
• fixed-parameter tractability
• ETH

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower bounds for Subset Sum and Bicriteria Path. In SODA 2019, pages 41-57. SIAM, 2019.
2. Matthias Aschenbrenner and Raymond Hemmecke. Finiteness Theorems in Stochastic Integer Programming. Foundations of Computational Mathematics, 7(2):183-227, 2007.
3. Marthe Bonamy, Łukasz Kowalik, Michał Pilipczuk, Arkadiusz Socała, and Marcin Wrochna. Tight Lower Bounds for the Complexity of Multicoloring. In ESA 2017, volume 87 of LIPIcs, pages 18:1-18:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
4. Nader H. Bshouty. Optimal Algorithms for the Coin Weighing Problem with a Spring Scale. In COLT 2009, 2009.
5. David G Cantor and WH Mills. Determination of a subset from certain combinatorial properties. Canad. J. Math, 18:42-48, 1966.
6. Lin Chen and Dániel Marx. Covering a tree with rooted subtrees - parameterized and approximation algorithms. In SODA 2018, pages 2801-2820. SIAM, 2018.
7. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
8. Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein. Faster Algorithms for Integer Programs with Block Structure. In ICALP 2018, volume 107 of LIPIcs, pages 49:1-49:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
9. Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for Integer Programming using the Steinitz Lemma. In SODA 2018, pages 808-816. SIAM, 2018.
10. Fedor V. Fomin, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. On the Optimality of Pseudo-polynomial Algorithms for Integer Programming. In ESA 2018, volume 112 of LIPIcs, pages 31:1-31:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
11. András Frank and Éva Tardos. An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica, 7(1):49-65, 1987.
12. Vladimir Grebinski and Gregory Kucherov. Optimal Reconstruction of Graphs under the Additive Model. Algorithmica, 28(1):104-124, 2000.
13. Raymond Hemmecke, Shmuel Onn, and Lyubov Romanchuk. n-Fold integer programming in cubic time. Math. Program., 137(1-2):325-341, 2013.
14. Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367-375, 2001.
15. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly Exponential Complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001.
16. Klaus Jansen, Kim-Manuel Klein, Marten Maack, and Malin Rau. Empowering the Configuration-IP - New PTAS Results for Scheduling with Setups Times. In ITCS 2019, volume 124 of LIPIcs, pages 44:1-44:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
17. Klaus Jansen and Lars Rohwedder. On Integer Programming and Convolution. In ITCS 2019, volume 124 of LIPIcs, pages 43:1-43:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
18. Ravi Kannan. Minkowski’s Convex Body Theorem and Integer Programming. Mathematics of Operations Research, 12(3):415-440, 1987.
19. Kim-Manuel Klein. About the Complexity of Two-Stage Stochastic IPs. CoRR, abs/1901.01135, 2019.
20. Dušan Knop and Martin Koutecký. Scheduling meets n-fold integer programming. J. Scheduling, 21(5):493-503, 2018.
21. Dušan Knop, Martin Koutecký, and Matthias Mnich. Combinatorial n-fold Integer Programming and Applications. In ESA 2017, volume 87 of LIPIcs, pages 54:1-54:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
22. Dušan Knop, Martin Koutecký, and Matthias Mnich. Voting and Bribing in Single-Exponential Time. In STACS 2017, volume 66 of LIPIcs, pages 46:1-46:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
23. Dušan Knop, Michał Pilipczuk, and Marcin Wrochna. Tight complexity lower bounds for integer linear programming with few constraints. CoRR, abs/1811.01296, 2018. URL: http://arxiv.org/abs/1811.01296.
24. Martin Koutecký, Asaf Levin, and Shmuel Onn. A Parameterized Strongly Polynomial Algorithm for Block Structured Integer Programs. In ICALP 2018, volume 107 of LIPIcs, pages 85:1-85:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
25. Hendrik W. Lenstra. Integer Programming with a Fixed Number of Variables. Mathematics of Operations Research, 8(4):538-548, 1983.
26. Bernt Lindström. On a combinatorial problem in number theory. Canad. Math. Bull, 8(4):477-490, 1965.
27. Jesús A. De Loera, Raymond Hemmecke, and Matthias Köppe. Algebraic and Geometric Ideas in the Theory of Discrete Optimization, volume 14 of MOS-SIAM Series on Optimization. SIAM, 2013.
28. Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.
29. Christos H. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):765-768, 1981.
30. Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics, 8(1):85-89, 1984.
X

Feedback for Dagstuhl Publishing