From Graph Theory to Network Science: The Natural Emergence of Hyperbolicity (Tutorial)

Author Tobias Friedrich



PDF
Thumbnail PDF

File

LIPIcs.STACS.2019.5.pdf
  • Filesize: 3.18 MB
  • 9 pages

Document Identifiers

Author Details

Tobias Friedrich
  • Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Cite AsGet BibTex

Tobias Friedrich. From Graph Theory to Network Science: The Natural Emergence of Hyperbolicity (Tutorial). In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 5:1-5:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.STACS.2019.5

Abstract

Network science is driven by the question which properties large real-world networks have and how we can exploit them algorithmically. In the past few years, hyperbolic graphs have emerged as a very promising model for scale-free networks. The connection between hyperbolic geometry and complex networks gives insights in both directions: (1) Hyperbolic geometry forms the basis of a natural and explanatory model for real-world networks. Hyperbolic random graphs are obtained by choosing random points in the hyperbolic plane and connecting pairs of points that are geometrically close. The resulting networks share many structural properties for example with online social networks like Facebook or Twitter. They are thus well suited for algorithmic analyses in a more realistic setting. (2) Starting with a real-world network, hyperbolic geometry is well-suited for metric embeddings. The vertices of a network can be mapped to points in this geometry, such that geometric distances are similar to graph distances. Such embeddings have a variety of algorithmic applications ranging from approximations based on efficient geometric algorithms to greedy routing solely using hyperbolic coordinates for navigation decisions.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Network science
Keywords
  • Graph Theory
  • Graph Algorithms
  • Network Science
  • Hyperbolic Geometry

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Mohammed Amin Abdullah, Michel Bode, and Nikolaos Fountoulakis. Typical Distances in a Geometric Model for Complex Networks. CoRR, abs/1506.07811, 2015. Google Scholar
  2. Aaron B. Adcock, Blair D. Sullivan, and Michael W. Mahoney. Tree Decompositions and Social Graphs. Internet Mathematics, 12(5):315-361, 2016. URL: http://dx.doi.org/10.1080/15427951.2016.1182952.
  3. William Aiello, Fan Chung, and Linyuan Lu. A random graph model for massive graphs. In 32nd STOC, pages 171-180, 2000. URL: http://dx.doi.org/10.1145/335305.335326.
  4. William Aiello, Fan Chung, and Linyuan Lu. A Random Graph Model for Power Law Graphs. Experimental Mathematics, 10(1):53-66, 2001. URL: http://dx.doi.org/10.1080/10586458.2001.10504428.
  5. Takuya Akiba and Yoichi Iwata. Branch-and-Reduce Exponential/FPT Algorithms in Practice: A Case Study of Vertex Cover. Theoretical Computer Science, 609:211-225, 2016. URL: http://dx.doi.org/10.1016/j.tcs.2015.09.023.
  6. Réka Albert, Bhaskar DasGupta, and Nasim Mobasheri. Topological Implications of Negative Curvature for Biological and Social Networks. Physical Review E, 89:032811, 2014. URL: http://dx.doi.org/10.1103/PhysRevE.89.032811.
  7. Rodrigo Aldecoa, Chiara Orsini, and Dmitri Krioukov. Hyperbolic graph generator. Computer Physics Communications, 196:492-496, 2015. URL: http://dx.doi.org/10.1016/j.cpc.2015.05.028.
  8. D. Angluin and L.G. Valiant. Fast Probabilistic Algorithms for Hamiltonian Circuits and Matchings. Journal of Computer and System Sciences, 18(2):155-193, 1979. URL: http://dx.doi.org/10.1016/0022-0000(79)90045-X.
  9. Albert-László Barabási and Réka Albert. Emergence of Scaling in Random Networks. Science, 286(5439):509-512, 1999. URL: http://dx.doi.org/10.1126/science.286.5439.509.
  10. Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Hyperbolic Random Graphs: Separators and Treewidth. In 24th ESA, pages 15:1-15:16, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.ESA.2016.15.
  11. Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. Efficient Embedding of Scale-Free Graphs in the Hyperbolic Plane. In 24th ESA, pages 16:1-16:18, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.ESA.2016.16.
  12. Thomas Bläsius, Cedric Freiberger, Tobias Friedrich, Maximilian Katzmann, Felix Montenegro-Retana, and Marianne Thieffry. Efficient Shortest Paths in Scale-Free Networks with Underlying Hyperbolic Geometry. In 45th ICALP, pages 20:1-20:14, 2018. Google Scholar
  13. Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, and Anton Krohmer. Hyperbolic Embeddings for Near-Optimal Greedy Routing. In 20th ALENEX, pages 199-208, 2018. Google Scholar
  14. Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Anton Krohmer, and Jonathan Striebel. Towards a Systematic Evaluation of Generative Network Models. In 15th WAW, pages 99-114, 2018. Google Scholar
  15. Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Cliques in Hyperbolic Random Graphs. Algorithmica, 80:2324-2344, 2018. Google Scholar
  16. Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. Efficient Embedding of Scale-Free Graphs in the Hyperbolic Plane. IEEE/ACM Transactions on Networking, 26(1-57570FN):920-933, 2018. Google Scholar
  17. Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. On the Largest Component of a Hyperbolic Model of Complex Networks. Electronic Journal of Combinatorics, 22(3):P3.24, 2015. Google Scholar
  18. Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. The probability of connectivity in a hyperbolic model of complex networks. Random Structures &Algorithms, 49(1):65-94, 2016. URL: http://dx.doi.org/10.1002/rsa.20626.
  19. Andrej Bogdanov and Luca Trevisan. Average-Case Complexity. Foundations and Trends in Theoretical Computer Science, 2(1):1-106, 2006. URL: http://dx.doi.org/10.1561/0400000004.
  20. Marián Boguná, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the Internet with Hyperbolic Mapping. Nature Communications, 1:62, 2010. URL: http://dx.doi.org/10.1038/ncomms1063.
  21. Béla Bollobás and Oliver Riordan. The Diameter of a Scale-Free Random Graph. Combinatorica, 24:5-34, 2004. URL: http://dx.doi.org/10.1007/s00493-004-0002-2.
  22. Michele Borassi and Emanuele Natale. KADABRA is an ADaptive Algorithm for Betweenness via Random Approximation. In 24th ESA, volume 57, pages 20:1-20:18, 2016. Google Scholar
  23. Karl Bringmann, Ralph Keusch, and Johannes Lengler. Sampling Geometric Inhomogeneous Random Graphs in Linear Time. In 25th ESA, pages 20:1-20:15, 2017. Google Scholar
  24. Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random graphs. Theoretical Computer Science, 2019. Google Scholar
  25. Elisabetta Candellero and Nikolaos Fountoulakis. Clustering and the Hyperbolic Geometry of Complex Networks. Internet Mathematics, 12(1-2):2-53, 2016. URL: http://dx.doi.org/10.1080/15427951.2015.1067848.
  26. Markus Chimani, Maria Kandyba, Ivana Ljubić, and Petra Mutzel. Obtaining Optimal k-Cardinality Trees Fast. In 20th ALENEX, pages 27-36, 2008. URL: http://dx.doi.org/10.1137/1.9781611972887.3.
  27. Fan Chung and Linyuan Lu. Connected Components in Random Graphs with Given Expected Degree Sequences. Annals of Combinatorics, 6(2):125-145, 2002. URL: http://dx.doi.org/10.1007/PL00012580.
  28. Fan Chung and Linyuan Lu. The average distances in random graphs with given expected degrees. Proceedings of the National Academy of Sciences, 99(25):15879-15882, 2002. Google Scholar
  29. Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-Law Distributions in Empirical Data. SIAM Review, 51(4):661-703, 2009. URL: http://dx.doi.org/10.1137/070710111.
  30. Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck. Exact Combinatorial Branch-and-Bound for Graph Bisection. In 14th ALENEX, pages 30-44, 2012. URL: http://dx.doi.org/10.1137/1.9781611972924.3.
  31. P. Erdős and A. Rényi. On Random Graphs I. Publicationes Mathematicae, 6:290-297, 1959. Google Scholar
  32. L. Ferretti, M. Cortelezzi, and M. Mamino. Duality between preferential attachment and static networks on hyperbolic spaces. Europhysics Letters, 105(3):38001, 2014. Google Scholar
  33. Nikolaos Fountoulakis, Tobias Friedrich, and Danny Hermelin. On the Average-Case Complexity of Parameterized Clique. Theoretical Computer Science, 576:18-29, 2015. URL: http://dx.doi.org/10.1016/j.tcs.2015.01.042.
  34. Tobias Friedrich and Anton Krohmer. Cliques in Hyperbolic Random Graphs. In 34th INFOCOM, pages 1544-1552, 2015. Google Scholar
  35. Tobias Friedrich and Anton Krohmer. On the Diameter of Hyperbolic Random Graphs. In 42nd ICALP, pages 241-252, 2015. Google Scholar
  36. Tobias Friedrich and Anton Krohmer. On the Diameter of Hyperbolic Random Graphs. SIAM Journal on Discrete Mathematics, 32(2):1314-1334, 2018. Google Scholar
  37. Yong Gao. Treewidth of Erdős-Rényi Random Graphs, Random Intersection Graphs, and Scale-Free Random Graphs. Discrete Applied Mathematics, 160(4-5):566-578, 2012. URL: http://dx.doi.org/10.1016/j.dam.2011.10.013.
  38. E. Gilbert. Random Plane Networks. Journal of the Society for Industrial and Applied Mathematics, 9(4):533-543, 1961. URL: http://dx.doi.org/10.1137/0109045.
  39. Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs: degree sequence and clustering. In 39th ICALP, pages 573-585, 2012. Google Scholar
  40. Remco van der Hofstad. Random Graphs and Complex Networks:, volume 1 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2016. URL: http://dx.doi.org/10.1017/9781316779422.
  41. Matthew O. Jackson. Social and Economic Networks. Princeton University Press, 2010. Google Scholar
  42. Richard M. Karp. The Probabilistic Analysis of Combinatorial Optimization Algorithms. In Proceedings of the International Congress of Mathematicians, pages 1601-1609, 1983. Google Scholar
  43. Marcos Kiwi and Dieter Mitsche. A Bound for the Diameter of Random Hyperbolic Graphs. In 12th ANALCO, pages 26-39, 2015. URL: http://dx.doi.org/10.1137/1.9781611973761.3.
  44. Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguñá. Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, 2010. URL: http://dx.doi.org/10.1103/PhysRevE.82.036106.
  45. Leonid A. Levin. Average Case Complete Problems. SIAM Journal on Computing, 15(1):285-286, 1986. URL: http://dx.doi.org/10.1137/0215020.
  46. Michael Mitzenmacher. A Brief History of Generative Models for Power Law and Lognormal Distributions. Internet Mathematics, 1(2):226-251, 2003. URL: http://dx.doi.org/10.1080/15427951.2004.10129088.
  47. M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5):323-351, 2005. URL: http://dx.doi.org/10.1080/00107510500052444.
  48. Ilkka Norros and Hannu Reittu. On a conditionally Poissonian graph process. Advances in Applied Probability, 38(1):59-75, 2006. Google Scholar
  49. M. Penrose. Random Geometric Graphs. Oxford scholarship online. Oxford University Press, 2003. Google Scholar
  50. Manuel Penschuck. Generating Practical Random Hyperbolic Graphs in Near-Linear Time and with Sub-Linear Memory. In 16th SEA, pages 26:1-26:21, 2017. Google Scholar
  51. G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Communications of the ACM, 43(5):51-58, 2000. URL: http://dx.doi.org/10.1145/332833.332838.
  52. Ryan Rossi and Nesreen Ahmed. The Network Data Repository with Interactive Graph Analytics and Visualization. In 29th AAAI, pages 4292-4293, 2015. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9553.
  53. Kevin Verbeek and Subhash Suri. Metric Embedding, Hyperbolic Space, and Social Networks. In 30th SoCG, pages 501-510, 2014. URL: http://dx.doi.org/10.1145/2582112.2582139.
  54. M. von Looz, M. S. Özdayi, S. Laue, and H. Meyerhenke. Generating Massive Complex Networks with Hyperbolic Geometry Faster in Practice. In 20th IEEE HPEC, pages 1-6, 2016. URL: http://dx.doi.org/10.1109/HPEC.2016.7761644.
  55. Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. Generating Random Hyperbolic Graphs in Subquadratic Time. In 26th ISAAC, pages 467-478, 2015. Google Scholar
  56. Duncan J. Watts and Steven H. Strogatz. Collective Dynamics of `Small-World' Networks. Nature, 939:440-442, 1998. URL: http://dx.doi.org/10.1038/30918.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail