The Semialgebraic Orbit Problem is a fundamental reachability question that arises in the analysis of discrete-time linear dynamical systems such as automata, Markov chains, recurrence sequences, and linear while loops. An instance of the problem comprises a dimension d in N, a square matrix A in Q^{d x d}, and semialgebraic source and target sets S,T subseteq R^d. The question is whether there exists x in S and n in N such that A^nx in T. The main result of this paper is that the Semialgebraic Orbit Problem is decidable for dimension d <= 3. Our decision procedure relies on separation bounds for algebraic numbers as well as a classical result of transcendental number theory - Baker’s theorem on linear forms in logarithms of algebraic numbers. We moreover argue that our main result represents a natural limit to what can be decided (with respect to reachability) about the orbit of a single matrix. On the one hand, semialgebraic sets are arguably the largest general class of subsets of R^d for which membership is decidable. On the other hand, previous work has shown that in dimension d=4, giving a decision procedure for the special case of the Orbit Problem with singleton source set S and polytope target set T would entail major breakthroughs in Diophantine approximation.
@InProceedings{almagor_et_al:LIPIcs.STACS.2019.6, author = {Almagor, Shaull and Ouaknine, Jo\"{e}l and Worrell, James}, title = {{The Semialgebraic Orbit Problem}}, booktitle = {36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)}, pages = {6:1--6:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-100-9}, ISSN = {1868-8969}, year = {2019}, volume = {126}, editor = {Niedermeier, Rolf and Paul, Christophe}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.6}, URN = {urn:nbn:de:0030-drops-102450}, doi = {10.4230/LIPIcs.STACS.2019.6}, annote = {Keywords: linear dynamical systems, Orbit Problem, first order theory of the reals} }
Feedback for Dagstuhl Publishing