LIPIcs.STACS.2021.28.pdf
- Filesize: 0.73 MB
- 16 pages
Register automata are finite automata equipped with a finite set of registers in which they can store data, i.e. elements from an unbounded or infinite alphabet. They provide a simple formalism to specify the behaviour of reactive systems operating over data ω-words. We study the synthesis problem for specifications given as register automata over a linearly ordered data domain (e.g. (ℕ, ≤) or (ℚ, ≤)), which allow for comparison of data with regards to the linear order. To that end, we extend the classical Church synthesis game to infinite alphabets: two players, Adam and Eve, alternately play some data, and Eve wins whenever their interaction complies with the specification, which is a language of ω-words over ordered data. Such games are however undecidable, even when the specification is recognised by a deterministic register automaton. This is in contrast with the equality case, where the problem is only undecidable for nondeterministic and universal specifications. Thus, we study one-sided Church games, where Eve instead operates over a finite alphabet, while Adam still manipulates data. We show they are determined, and deciding the existence of a winning strategy is in ExpTime, both for ℚ and ℕ. This follows from a study of constraint sequences, which abstract the behaviour of register automata, and allow us to reduce Church games to ω-regular games. Lastly, we apply these results to the transducer synthesis problem for input-driven register automata, where each output data is restricted to be the content of some register, and show that if there exists an implementation, then there exists one which is a register transducer.
Feedback for Dagstuhl Publishing