Document

# Near-Optimal Algorithms for Point-Line Covering Problems

## File

LIPIcs.STACS.2022.21.pdf
• Filesize: 0.83 MB
• 18 pages

## Cite As

Jianer Chen, Qin Huang, Iyad Kanj, and Ge Xia. Near-Optimal Algorithms for Point-Line Covering Problems. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.STACS.2022.21

## Abstract

We study fundamental point-line covering problems in computational geometry, in which the input is a set S of points in the plane. The first is the Rich Lines problem, which asks for the set of all lines that each covers at least λ points from S, for a given integer parameter λ ≥ 2; this problem subsumes the 3-Points-on-Line problem and the Exact Fitting problem, which - the latter - asks for a line containing the maximum number of points. The second is the NP-hard problem Line Cover, which asks for a set of k lines that cover the points of S, for a given parameter k ∈ ℕ. Both problems have been extensively studied. In particular, the Rich Lines problem is a fundamental problem whose solution serves as a building block for several algorithms in computational geometry. For Rich Lines and Exact Fitting, we present a randomized Monte Carlo algorithm that achieves a lower running time than that of Guibas et al.’s algorithm [Computational Geometry 1996], for a wide range of the parameter λ. We derive lower-bound results showing that, for λ = Ω(√{n log n}), the upper bound on the running time of this randomized algorithm matches the lower bound that we derive on the time complexity of Rich Lines in the algebraic computation trees model. For Line Cover, we present two kernelization algorithms: a randomized Monte Carlo algorithm and a deterministic algorithm. Both algorithms improve the running time of existing kernelization algorithms for Line Cover. We derive lower-bound results showing that the running time of the randomized algorithm we present comes close to the lower bound we derive on the time complexity of kernelization algorithms for Line Cover in the algebraic computation trees model.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Computational geometry
• Theory of computation → Parameterized complexity and exact algorithms
##### Keywords
• line cover
• rich lines
• exact fitting
• kernelization
• randomized algorithms
• complexity lower bounds
• algebraic computation trees

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. P. Afshani, E. Berglin, I. van Duijn, and J. Nielsen. Applications of incidence bounds in point covering problems. In Proc. 32nd International Symposium on Computational Geometry (SoCG 2016), Article No. 60, pages 1-15, 2016.
2. P. K. Agarwal and S. Sen. Randomized algorithms for geometric optimization problems. In Handbook of Randomized Computation, pages 151-201. Kluwer Academic Press, 2001.
3. J. Alman, M. Mnich, and V. V. Williams. Dynamic parameterized problems and algorithms. In Proc. 44th International Colloquium on Automata, Languages and Programming (ICALP 2017), Article No. 41, pages 1-16, 2017.
4. M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th ACM Symposium on Theory of Computing (STOC 1983), pages 80-86, 1983.
5. H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-dimension. Discrete & Computational Geometry, 14:263-279, 1995.
6. P. Bürgisser, M. Clausen, and M. Shokrollahi. Algebraic Complexity Theory. Springer, Berlin, 1997.
7. C. Cao. Study on two optimization problems: Line cover and maximum genus embedding. PhD thesis, Texas A&M University, 2012.
8. R. Chitnis, G. Cormode, H. Esfandiari, M. Hajiaghayi, and M. Monemizadeh. New streaming algorithms for parameterized maximal matching and beyond. In Proc. 27th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA 2015), pages 56-58, 2015.
9. K. L. Clarkson. New applications of random sampling in computational geometry. Discrete & Computational Geometry, 2:195-222, 1987.
10. K. L. Clarkson. Randomized geometric algorithms. In Computing in Euclidean Geometry, volume 1, pages 117-162. World Scientific, 1992.
11. K. L. Clarkson. Algorithms for polytope covering and approximation. In Proc. 3rd Workshop Algorithms Data Struct, pages 246-252, 1993.
12. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II. Discrete & Computational Geometry, 4:387-421, 1989.
13. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.
14. R. Downey and M. Fellows. Fundamentals of Parameterized Complexity. Springer, New York, 2013.
15. J. Erickson. New lower bounds for Hopcroft’s problem. Discrete & Computational Geometry, 16:389-418, 1996.
16. V. Estivill-Castro, A. Heednacram, and F. Suraweera. Reduction rules deliver efficient FPT-algorithms for covering points with lines. Journal of Experimental Algorithmics, 14:1-7, 2010.
17. V. Estivill-Castro, A. Heednacram, and F. Suraweera. FPT-algorithms for minimum-bends tours. International Journal of Computational Geometry & Applications, 21(2):189-213, 2011.
18. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, Berlin, 2010.
19. H. Fournier and A. Vigneron. A tight lower bound for computing the diameter of a 3D convex polytope. Algorithmica, 49:245-257, 2007.
20. D. A. Freedman. Statistical Model: Theory and Practice. Cambridge University Press, 2009.
21. V. Froese, I. A. Kanj, A. Nichterlein, and R. Niedermeier. Finding points in general position. International Journal of Computational Geometry and Applications, 27(4):277-296, 2017.
22. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics: A foundation for computer science. Addison-Wesley, Reading, MA, 1989.
23. M. Grantson and C. Levcopoulos. Covering a set of points with a minimum number of lines. In Proc. 6th Italian Conference on Algorithms and Complexity (CIAC 2006), pages 6-17. Lecture Notes in Computer Science 3998, 2006.
24. J. Gudmundsson, M. van Kreveld, and B. Speckmann. Efficient detection of patterns in 2D trajectories of moving points. Geoinformatica, 11(2):195-215, 2007.
25. L. J. Guibas, M. H. Overmars, and J. M. Robert. The exact fitting problem in higher dimensions. Computational geometry, 6:215-230, 1996.
26. M. Houle, H. Imai, K. Imai, J. Robert, and P. Yamamoto. Orthogonal weighted linear L₁ and L_∞ approximation and applications. Discrete Applied Mathematics, 43(3):217-232, 1993.
27. M. Houle and T. Toussaint. Computing the width of a set. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(5):761-765, 1988.
28. D. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 9:256-278, 1974.
29. S. Kratsch, G. Philip, and S. Ray. Point line cover: the easy kernel is essentially tight. ACM Transactions on Algorithms, 12:3, 2016.
30. V. A. Kumar, S. Arya, and H. H. Ramesh. Hardness of set cover with intersection 1. In Proc. 27th International Colloquium on Automata, Languages, and Programming (ICALP 2000), pages 624-635, 2000.
31. S. Langerman and P. Morin. Covering things with things. Discrete & Computational Geometry, 33(4):717-729, 2005.
32. J. Matousek. Range searching with efficient hierarchical cutting. Discrete Computational Geometry, 10:157-182, 1993.
33. N. Megiddo and A. Tamir. On the complexity of locating linear facilities in the plane. Operations Research Letters, 1(5):194-197, 1982.
34. M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge University Press, 2nd edition, 2017.
35. M. Mnich. Big data algorithms beyond machine learning. Künstliche Intelligencz, 32:9-17, 2018.
36. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
37. J. Pach, R. Radoicic, G. Tardos, and G. Toth. Improving the crossing lemma by finding more crossings in sparse graphs. Discrete & Computational Geometry, 36(4):527-552, 2006.
38. F. Preparata and I. Shamos. Computational Geometry: An Introduction. 2nd edn. Texts and Monographs in Computer Science. Springer, New York, 1985.
39. W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, 3rd edition, 1976.
40. E. Szemerédi and W. Trotter. Extremal problems in discrete geometry. Combinatorica, 3(3-4):381-392, 1983.
41. J. Wang, W. Li, and J. Chen. A parameterized algorithm for the hyperplane-cover problem. Theoretical Computer Science, 411:4005-4009, 2010.
X

Feedback for Dagstuhl Publishing