Local Certification of Local Properties: Tight Bounds, Trade-Offs and New Parameters

Authors Nicolas Bousquet , Laurent Feuilloley , Sébastien Zeitoun



PDF
Thumbnail PDF

File

LIPIcs.STACS.2024.21.pdf
  • Filesize: 0.75 MB
  • 18 pages

Document Identifiers

Author Details

Nicolas Bousquet
  • Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205 F-69622 Villeurbanne, France
Laurent Feuilloley
  • Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, F-69622 Villeurbanne, France
Sébastien Zeitoun
  • Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, F-69622 Villeurbanne, France

Acknowledgements

The authors thank anonymous reviewers for useful comments.

Cite AsGet BibTex

Nicolas Bousquet, Laurent Feuilloley, and Sébastien Zeitoun. Local Certification of Local Properties: Tight Bounds, Trade-Offs and New Parameters. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.STACS.2024.21

Abstract

Local certification is a distributed mechanism enabling the nodes of a network to check the correctness of the current configuration, thanks to small pieces of information called certificates. For many classic global properties, like checking the acyclicity of the network, the optimal size of the certificates depends on the size of the network, n. In this paper, we focus on properties for which the size of the certificates does not depend on n but on other parameters. We focus on three such important properties and prove tight bounds for all of them. Namely, we prove that the optimal certification size is: Θ(log k) for k-colorability (and even exactly ⌈ log k ⌉ bits in the anonymous model while previous works had only proved a 2-bit lower bound); (1/2)log t+o(log t) for dominating sets at distance t (an unexpected and tighter-than-usual bound) ; and Θ(log Δ) for perfect matching in graphs of maximum degree Δ (the first non-trivial bound parameterized by Δ). We also prove some surprising upper bounds, for example, certifying the existence of a perfect matching in a planar graph can be done with only two bits. In addition, we explore various specific cases for these properties, in particular improving our understanding of the trade-off between locality of the verification and certificate size.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
Keywords
  • Local certification
  • local properties
  • proof-labeling schemes
  • locally checkable proofs
  • optimal certification size
  • colorability
  • dominating set
  • perfect matching
  • fault-tolerance
  • graph structure

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka Suomela. Lower bounds for maximal matchings and maximal independent sets. J. ACM, 68(5):39:1-39:30, 2021. URL: https://doi.org/10.1145/3461458.
  2. Samuel Bernard, Stéphane Devismes, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. Optimal deterministic self-stabilizing vertex coloring in unidirectional anonymous networks. In 23rd IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2009, pages 1-8, 2009. URL: https://doi.org/10.1109/IPDPS.2009.5161053.
  3. Aviv Bick, Gillat Kol, and Rotem Oshman. Distributed zero-knowledge proofs over networks. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages 2426-2458. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.97.
  4. Nicolas Bousquet, Laurent Feuilloley, and Théo Pierron. What can be certified compactly? compact local certification of MSO properties in tree-like graphs. In PODC '22: ACM Symposium on Principles of Distributed Computing, pages 131-140, 2022. URL: https://doi.org/10.1145/3519270.3538416.
  5. Nicolas Bousquet, Laurent Feuilloley, and Sébastien Zeitoun. Local certification of local properties: tight bounds, trade-offs and new parameters, 2023. URL: https://arxiv.org/abs/2312.13702.
  6. Sebastian Brandt and Dennis Olivetti. Truly tight-in-Δ bounds for bipartite maximal matching and variants. In PODC '20: ACM Symposium on Principles of Distributed Computing, pages 69-78, 2020. URL: https://doi.org/10.1145/3382734.3405745.
  7. Jesper Makholm Byskov. Enumerating maximal independent sets with applications to graph colouring. Oper. Res. Lett., 32(6):547-556, 2004. URL: https://doi.org/10.1016/j.orl.2004.03.002.
  8. Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes. Theor. Comput. Sci., 811:112-124, 2020. URL: https://doi.org/10.1016/j.tcs.2018.08.020.
  9. Johanne Cohen, Jonas Lefèvre, Khaled Maâmra, Laurence Pilard, and Devan Sohier. A self-stabilizing algorithm for maximal matching in anonymous networks. Parallel Process. Lett., 26(4):1650016:1-1650016:17, 2016. URL: https://doi.org/10.1142/S012962641650016X.
  10. Amin Coja-Oghlan, Charilaos Efthymiou, and Samuel Hetterich. On the chromatic number of random regular graphs. J. Comb. Theory, Ser. B, 116:367-439, 2016. URL: https://doi.org/10.1016/j.jctb.2015.09.006.
  11. Yuval Emek and Yuval Gil. Twenty-two new approximate proof labeling schemes. In 34th International Symposium on Distributed Computing, DISC 2020, volume 179, pages 20:1-20:14, 2020. URL: https://doi.org/10.4230/LIPIcs.DISC.2020.20.
  12. P Erdős and A Rényi. On the existence of a factor of degree one of a connected random graph. Acta Mathematica Hungarica, 17(3-4):359-368, 1966. Google Scholar
  13. Paul Erdös. Graph theory and probability. Canadian Journal of Mathematics, 11:34-38, 1959. Google Scholar
  14. Laurent Feuilloley. Introduction to local certification. Discret. Math. Theor. Comput. Sci., 23(3), 2021. URL: https://doi.org/10.46298/dmtcs.6280.
  15. Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry. Redundancy in distributed proofs. Distributed Comput., 34(2):113-132, 2021. URL: https://doi.org/10.1007/s00446-020-00386-z.
  16. Michael J. Fischer and Hong Jiang. Self-stabilizing leader election in networks of finite-state anonymous agents. In Alexander A. Shvartsman, editor, Principles of Distributed Systems, 10th International Conference, OPODIS 2006, volume 4305, pages 395-409, 2006. URL: https://doi.org/10.1007/11945529_28.
  17. Orr Fischer, Rotem Oshman, and Dana Shamir. Explicit space-time tradeoffs for proof labeling schemes in graphs with small separators. In 25th International Conference on Principles of Distributed Systems, OPODIS 2021, volume 217 of LIPIcs, pages 21:1-21:22, 2021. URL: https://doi.org/10.4230/LIPIcs.OPODIS.2021.21.
  18. Pierre Fraigniaud, Frédéric Mazoit, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. Distributed certification for classes of dense graphs. CoRR, abs/2307.14292, 2023. URL: https://doi.org/10.48550/arXiv.2307.14292.
  19. Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. A meta-theorem for distributed certification. In Structural Information and Communication Complexity - 29th International Colloquium, SIROCCO 2022, volume 13298, pages 116-134, 2022. URL: https://doi.org/10.1007/978-3-031-09993-9_7.
  20. Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory Comput., 12(1):1-33, 2016. URL: https://doi.org/10.4086/toc.2016.v012a019.
  21. Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Comput., 22(4):215-233, 2010. URL: https://doi.org/10.1007/s00446-010-0095-3.
  22. Virgina Ardévol Martínez, Marco Caoduro, Laurent Feuilloley, Jonathan Narboni, Pegah Pournajafi, and Jean-Florent Raymond. Lower bound for constant-size local certification. In Stabilization, Safety, and Security of Distributed Systems - 24th International Symposium, SSS 2022, volume 13751, pages 239-253, 2022. URL: https://doi.org/10.1007/978-3-031-21017-4_16.
  23. Moshe Morgenstern. Existence and explicit constructions of q + 1 regular ramanujan graphs for every prime power q. J. Comb. Theory, Ser. B, 62(1):44-62, 1994. URL: https://doi.org/10.1006/jctb.1994.1054.
  24. Rafail Ostrovsky, Mor Perry, and Will Rosenbaum. Space-time tradeoffs for distributed verification. In Structural Information and Communication Complexity - 24th International Colloquium, SIROCCO 2017, volume 10641, pages 53-70, 2017. URL: https://doi.org/10.1007/978-3-319-72050-0_4.
  25. Jukka Suomela. Using round elimination to understand locality. SIGACT News, 51(3):63-81, 2020. URL: https://doi.org/10.1145/3427361.3427374.
  26. Nicolas Trotignon. Perfect graphs: a survey. CoRR, abs/1301.5149, 2013. URL: https://arxiv.org/abs/1301.5149.
  27. Jonathan S. Turner. Almost all k-colorable graphs are easy to color. J. Algorithms, 9(1):63-82, 1988. URL: https://doi.org/10.1016/0196-6774(88)90005-3.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail