Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs

Authors Marek Filakovský , Tamio-Vesa Nakajima , Jakub Opršal , Gianluca Tasinato , Uli Wagner



PDF
Thumbnail PDF

File

LIPIcs.STACS.2024.34.pdf
  • Filesize: 0.88 MB
  • 19 pages

Document Identifiers

Author Details

Marek Filakovský
  • Masaryk University, Brno, Czech Republic
Tamio-Vesa Nakajima
  • University of Oxford, UK
Jakub Opršal
  • University of Birmingham, UK
Gianluca Tasinato
  • ISTA, Klosterneuburg, Austria
Uli Wagner
  • ISTA, Klosterneuburg, Austria

Cite AsGet BibTex

Marek Filakovský, Tamio-Vesa Nakajima, Jakub Opršal, Gianluca Tasinato, and Uli Wagner. Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 34:1-34:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.STACS.2024.34

Abstract

A linearly ordered (LO) k-colouring of a hypergraph is a colouring of its vertices with colours 1, … , k such that each edge contains a unique maximal colour. Deciding whether an input hypergraph admits LO k-colouring with a fixed number of colours is NP-complete (and in the special case of graphs, LO colouring coincides with the usual graph colouring). Here, we investigate the complexity of approximating the "linearly ordered chromatic number" of a hypergraph. We prove that the following promise problem is NP-complete: Given a 3-uniform hypergraph, distinguish between the case that it is LO 3-colourable, and the case that it is not even LO 4-colourable. We prove this result by a combination of algebraic, topological, and combinatorial methods, building on and extending a topological approach for studying approximate graph colouring introduced by Krokhin, Opršal, Wrochna, and Živný (2023).

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Approximation algorithms
  • Mathematics of computing → Algebraic topology
  • Theory of computation → Problems, reductions and completeness
Keywords
  • constraint satisfaction problem
  • hypergraph colouring
  • promise problem
  • topological methods

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+ε)-Sat is NP-hard. SIAM Jounal on Computing, 46(5):1554-1573, 2017. URL: https://doi.org/10.1137/15M1006507.
  2. Libor Barto, Diego Battistelli, and Kevin M. Berg. Symmetric promise constraint satisfaction problems: Beyond the Boolean case. In Markus Bläser and Benjamin Monmege, editors, 38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages 10:1-10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.STACS.2021.10.
  3. Libor Barto, Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise constraint satisfaction. J. ACM, 68(4):28:1-66, 2021. URL: https://doi.org/10.1145/3457606.
  4. Joshua Brakensiek and Venkatesan Guruswami. New hardness results for graph and hypergraph colorings. In Ran Raz, editor, Conference on Computational Complexity (CCC 2016), volume 50 of LIPIcs, pages 14:1-14:27, Dagstuhl, Germany, 2016. Schloss Dagstuhl-LZI. URL: https://doi.org/10.4230/LIPIcs.CCC.2016.14.
  5. Joshua Brakensiek and Venkatesan Guruswami. Promise constraint satisfaction: Algebraic structure and a symmetric Boolean dichotomy. SIAM Jounal on Computing, 50(6):1663-1700, 2021. URL: https://doi.org/10.1137/19M128212X.
  6. Mark Braverman, Subhash Khot, Noam Lifshitz, and Dor Minzer. An invariance principle for the multi-slice, with applications. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science - FOCS 2021, pages 228-236. IEEE Computer Soc., Los Alamitos, CA, 2022. URL: https://doi.org/10.1109/FOCS52979.2021.00030.
  7. Glen E. Bredon. Equivariant Cohomology Theories, volume 34 of Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1967. URL: https://doi.org/10.1007/BFb0082690.
  8. Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 319-330, Berkeley, CA, USA, 2017. IEEE. URL: https://doi.org/10.1109/FOCS.2017.37.
  9. Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise constraint satisfaction. In Proc. of the 51st Annual ACM-SIGACT Symposium on the Theory of Computing, STOC 2019, pages 602-613, New York, USA, 2019. ACM. URL: https://doi.org/10.1145/3313276.3316300.
  10. Lorenzo Ciardo, Marcin Kozik, Andrei A. Krokhin, Tamio-Vesa Nakajima, and Stanislav Živný. On the complexity of the approximate hypergraph homomorphism problem, 2023. URL: https://doi.org/10.48550/arXiv.2302.03456.
  11. Víctor Dalmau and Jakub Opršal. Local consistency as a reduction between constraint satisfaction problems, 2023. URL: https://doi.org/10.48550/arXiv.2301.05084.
  12. Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate coloring. SIAM J. Comput., 39(3):843-873, 2009. URL: https://doi.org/10.1137/07068062X.
  13. Irit Dinur, Oded Regev, and Clifford Smyth. The hardness of 3-uniform hypergraph coloring. Combinatorica, 25(5):519-535, 2005. URL: https://doi.org/10.1007/s00493-005-0032-4.
  14. Marek Filakovský, Tamio-Vesa Nakajima, Jakub Opršal, Gianluca Tasinato, and Uli Wagner. Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs, 2023. URL: https://doi.org/10.48550/arXiv.2312.12981.
  15. Venkatesan Guruswami and Sai Sandeep. d-to-1 hardness of coloring 3-colorable graphs with O(1) colors. In 47th International Colloquium on Automata, Languages, and Programming, volume 168 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 62, 12. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.62.
  16. Magnús M. Halldórsson. A still better performance guarantee for approximate graph coloring. Inform. Process. Lett., 45(1):19-23, 1993. URL: https://doi.org/10.1016/0020-0190(93)90246-6.
  17. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller, James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations, Mar 20-22, 1972, Yorktown Heights, New York, pages 85-103, Boston, MA, 1972. Springer US. URL: https://doi.org/10.1007/978-1-4684-2001-2_9.
  18. Ken-ichi Kawarabayashi and Mikkel Thorup. Coloring 3-colorable graphs with less than n^1/5 colors. J. ACM, 64(1):4:1-4:23, 2017. URL: https://doi.org/10.1145/3001582.
  19. Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the chromatic number. Combinatorica, 20(3):393-415, 2000. URL: https://doi.org/10.1007/s004930070013.
  20. Dmitry Kozlov. Combinatorial algebraic topology, volume 21 of Algorithms and Computation in Mathematics. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-71962-5.
  21. Andrei Krokhin and Jakub Opršal. The complexity of 3-colouring H-colourable graphs. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS'19), pages 1227-1239, Baltimore, MD, USA, 2019. IEEE. URL: https://doi.org/10.1109/FOCS.2019.00076.
  22. Andrei Krokhin and Jakub Opršal. An invitation to the promise constraint satisfaction problem. ACM SIGLOG News, 9(3):30-59, 2022. URL: https://doi.org/10.1145/3559736.3559740.
  23. Andrei A. Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. Topology and adjunction in promise constraint satisfaction. SIAM Journal on Computing, 52(1):38-79, 2023. URL: https://doi.org/10.1137/20M1378223.
  24. László Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A, 25(3):319-324, 1978. URL: https://doi.org/10.1016/0097-3165(78)90022-5.
  25. Jiří Matoušek. Using the Borsuk-Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry. Springer-Verlag Berlin Heidelberg, first edition, 2003. URL: https://doi.org/10.1007/978-3-540-76649-0.
  26. Tamio-Vesa Nakajima and Stanislav Živný. Linearly ordered colourings of hypergraphs. ACM Trans. Comput. Theory, 14(3-4), February 2023. URL: https://doi.org/10.1145/3570909.
  27. Tamio-Vesa Nakajima and Stanislav Živný. Boolean symmetric vs. functional PCSP dichotomy. In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-12, 2023. URL: https://doi.org/10.1109/LICS56636.2023.10175746.
  28. Marcin Wrochna. Homomorphism reconfiguration via homotopy. SIAM J. Discret. Math., 34(1):328-350, 2020. URL: https://doi.org/10.1137/17M1122578.
  29. Marcin Wrochna and Stanislav Živný. Improved hardness for H-colourings of G-colourable graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'20), pages 1426-1435, Salt Lake City, UT, USA, 2020. SIAM. URL: https://doi.org/10.1137/1.9781611975994.86.
  30. Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1-30:78, 2020. URL: https://doi.org/10.1145/3402029.
  31. David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput., 3:103-128, 2007. URL: https://doi.org/10.4086/toc.2007.v003a006.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail