Enumerating Vertices of 0/1-Polyhedra associated with 0/1-Totally Unimodular Matrices

Authors Khaled Elbassioni, Kazuhisa Makino

Thumbnail PDF


  • Filesize: 0.51 MB
  • 14 pages

Document Identifiers

Author Details

Khaled Elbassioni
  • Masdar Institute, Khalifa University of Science and Technology, Abu Dhabi 54224, UAE
Kazuhisa Makino
  • Research Institute for Mathematical Sciences (RIMS) Kyoto University, Kyoto 606-8502, Japan

Cite AsGet BibTex

Khaled Elbassioni and Kazuhisa Makino. Enumerating Vertices of 0/1-Polyhedra associated with 0/1-Totally Unimodular Matrices. In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 101, pp. 18:1-18:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


We give an incremental polynomial time algorithm for enumerating the vertices of any polyhedron P=P(A,1_)={x in R^n | Ax >= 1_, x >= 0_}, when A is a totally unimodular matrix. Our algorithm is based on decomposing the hypergraph transversal problem for unimodular hypergraphs using Seymour's decomposition of totally unimodular matrices, and may be of independent interest.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorial algorithms
  • Mathematics of computing → Hypergraphs
  • Totally unimodular matrices
  • Vertices of polyhedra
  • Vertex enumeration
  • Hypergraph transversals
  • Hypergraph decomposition
  • Output polynomial-time algorithm


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. S. D. Abdullahi. Vertex Enumeration and Counting for Certain Classes of Polyhedra. PhD thesis, Computing (Computer Algorithms) Leeds University U.K., 2003. Google Scholar
  2. D. Avis, B. Bremner, and R. Seidel. How good are convex hull algorithms. Computational Geometry: Theory and Applications, 7:265-302, 1997. Google Scholar
  3. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete and Computational Geometry, 8(3):295-313, 1992. Google Scholar
  4. D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathematics, 65(1-3):21-46, 1996. Google Scholar
  5. D. Avis, G. D. Rosenberg, R. Savani, and B. von Stengel. Enumeration of Nash equilibria for two-player games. Economic Theory, 42(1):9-37, 2010. Google Scholar
  6. C. Berge. Hypergraphs. Elsevier-North Holand, Amsterdam, 1989. Google Scholar
  7. J. C. Bioch and T. Ibaraki. Complexity of identification and dualization of positive boolean functions. Information and Computation, 123(1):50-63, 1995. Google Scholar
  8. E. Boros, K. Elbassioni, V. Gurvich, and K. Makino. Generating vertices of polyhedra and related problems of monotone generation. In D. Avis, D. Bremner, and A. Deza, editors, Proceedings of the Centre de Recherches Mathématiques at the Université de Montréal, special issue on Polyhedral Computation, volume 49, 2009. Google Scholar
  9. E. Boros, K. Elbassioni, V. Gurvich, and H. R. Tiwary. The negative cycles polyhedron and hardness of checking some polyhedral properties. Annals OR, 188(1):63-76, 2011. Google Scholar
  10. D. Bremner, K. Fukuda, and A. Marzetta. Primal-dual methods for vertex and facet enumeration. Discrete and Computational Geometry, 20:333-357, 1998. Google Scholar
  11. M. R. Bussieck and M. E. Lübbecke. The vertex set of a 0/1 polytope is strongly 𝒫-enumerable. Computational Geometry: Theory and Applications, 11(2):103-109, 1998. Google Scholar
  12. V. Chvátal. Linear Programming. Freeman, San Francisco, CA, 1983. Google Scholar
  13. G. Cornuéjols. Combinatorial Optimization: Packing and Covering. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, 2001. Google Scholar
  14. M. E. Dyer. The complexity of vertex enumeration methods. Mathematics of Operations Research, 8:381-402, 1983. Google Scholar
  15. M. E. Dyer and L. G. Proll. An algorithms for determining all extreme points of a convex polytope. Mathematical Programming, 12:81-96, 1977. Google Scholar
  16. T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph and related problems. SIAM Journal on Computing, 24(6):1278-1304, 1995. Google Scholar
  17. T. Eiter, G. Gottlob, and K. Makino. New results on monotone dualization and generating hypergraph transversals. SIAM Journal on Computing, 32(2):514-537, 2003. Google Scholar
  18. K. Elbassioni and K. Makino. Enumerating vertices of 0/1-polyhedra associated with 0/1-totally unimodular matrices. CoRR, abs/1707.03914, 2017. URL: http://arxiv.org/abs/1707.03914.
  19. M. L. Fredman and L. Khachiyan. On the complexity of dualization of monotone disjunctive normal forms. Journal of Algorithms, 21:618-628, 1996. Google Scholar
  20. V. Gurvich and L. Khachiyan. On generating the irredundant conjunctive and disjunctive normal forms of monotone Boolean functions. Discrete Applied Mathematics, 96-97(1):363-373, 1999. Google Scholar
  21. L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich. Generating all vertices of a polyhedron is hard. Discrete & Computational Geometry, 39(1-3):174-190, 2008. Google Scholar
  22. L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, and K. Makino. On the complexity of some enumeration problems for matroids. SIAM Journal on Discrete Mathematics, 19(4):966-984, 2005. Google Scholar
  23. E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM Journal on Computing, 9:558-565, 1980. Google Scholar
  24. A. Lehman. On the width-length inequality, mimeographic notes. Mathematical Programming, 17:403-417, 1979. Google Scholar
  25. L. Lovász. Combinatorial optimization: some problems and trends. DIMACS Technical Report 92-53, Rutgers University, 1992. Google Scholar
  26. N. Mishra and L. Pitt. Generating all maximal independent sets of bounded-degree hypergraphs. In COLT '97: Proceedings of the 10th annual conference on Computational learning theory, pages 211-217, 1997. Google Scholar
  27. M. E. Pfetsch. The Maximum Feasible Subsystem Problem and Vertex-Facet Incidences of Polyhedra. Dissertation, TU Berlin, 2002. Google Scholar
  28. J.S. Provan. Efficient enumeration of the vertices of polyhedra associated with network LP’s. Mathematical Programming, 63(1):47-64, 1994. Google Scholar
  29. A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York, 1986. Google Scholar
  30. R. Seidel. Output-size sensitive algorithms for constructive problems in computational geometry. Computer science, Cornell University, Ithaka, NY, 1986. Google Scholar
  31. P. D. Seymour. Decomposition of regular matroids. Journal of Combinatorial Theory, Series B, 28(3):305-359, 1980. Google Scholar
  32. K. Truemper. Matroid Decomposition. Academic Press, 1992. Google Scholar
  33. V. V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., New York, NY, USA, 2001. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail