We study the problem of low-stretch spanning trees in graphs of bounded width: bandwidth, cutwidth, and treewidth. We show that any simple connected graph G with a linear arrangement of bandwidth b can be embedded into a distribution T of spanning trees such that the expected stretch of each edge of G is O(b²). Our proof implies a linear time algorithm for sampling from T. Therefore, we have a linear time algorithm that finds a spanning tree of G with average stretch O(b²) with high probability. We also describe a deterministic linear-time algorithm for computing a spanning tree of G with average stretch O(b³). For graphs of cutwidth c, we construct a spanning tree with stretch O(c²) in linear time. Finally, when G has treewidth k we provide a dynamic programming algorithm computing a minimum stretch spanning tree of G that runs in polynomial time with respect to the number of vertices of G.
@InProceedings{borradaile_et_al:LIPIcs.SWAT.2020.15, author = {Borradaile, Glencora and Chambers, Erin Wolf and Eppstein, David and Maxwell, William and Nayyeri, Amir}, title = {{Low-Stretch Spanning Trees of Graphs with Bounded Width}}, booktitle = {17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)}, pages = {15:1--15:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-150-4}, ISSN = {1868-8969}, year = {2020}, volume = {162}, editor = {Albers, Susanne}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.15}, URN = {urn:nbn:de:0030-drops-122622}, doi = {10.4230/LIPIcs.SWAT.2020.15}, annote = {Keywords: Treewidth, low-stretch spanning tree, fundamental cycle basis} }
Feedback for Dagstuhl Publishing