Preprocessing Vertex-Deletion Problems: Characterizing Graph Properties by Low-Rank Adjacencies

Authors Bart M. P. Jansen , Jari J. H. de Kroon



PDF
Thumbnail PDF

File

LIPIcs.SWAT.2020.27.pdf
  • Filesize: 0.62 MB
  • 15 pages

Document Identifiers

Author Details

Bart M. P. Jansen
  • Eindhoven University of Technology, The Netherlands
Jari J. H. de Kroon
  • Eindhoven University of Technology, The Netherlands

Acknowledgements

We would like to thank Fedor V. Fomin for hosting Jari in Bergen (Norway).

Cite AsGet BibTex

Bart M. P. Jansen and Jari J. H. de Kroon. Preprocessing Vertex-Deletion Problems: Characterizing Graph Properties by Low-Rank Adjacencies. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 27:1-27:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.SWAT.2020.27

Abstract

We consider the Π-free Deletion problem parameterized by the size of a vertex cover, for a range of graph properties Π. Given an input graph G, this problem asks whether there is a subset of at most k vertices whose removal ensures the resulting graph does not contain a graph from Π as induced subgraph. Many vertex-deletion problems such as Perfect Deletion, Wheel-free Deletion, and Interval Deletion fit into this framework. We introduce the concept of characterizing a graph property Π by low-rank adjacencies, and use it as the cornerstone of a general kernelization theorem for Π-Free Deletion parameterized by the size of a vertex cover. The resulting framework captures problems such as AT-Free Deletion, Wheel-free Deletion, and Interval Deletion. Moreover, our new framework shows that the vertex-deletion problem to perfect graphs has a polynomial kernel when parameterized by vertex cover, thereby resolving an open question by Fomin et al. [JCSS 2014]. Our main technical contribution shows how linear-algebraic dependence of suitably defined vectors over 𝔽₂ implies graph-theoretic statements about the presence of forbidden induced subgraphs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • Theory of computation → Graph algorithms analysis
  • Mathematics of computing → Graph theory
Keywords
  • kernelization
  • vertex-deletion
  • graph modification
  • structural parameterization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Akanksha Agrawal, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Interval vertex deletion admits a polynomial kernel. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '19, pages 1711-1730, 2019. URL: http://dl.acm.org/citation.cfm?id=3310435.3310538.
  2. Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M. Thilikos. (Meta) Kernelization. J. ACM, 63(5):44:1-44:69, 2016. URL: http://dx.doi.org/10.1145/2973749.
  3. H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch. Kernelization lower bounds by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277-305, 2014. URL: http://dx.doi.org/10.1137/120880240.
  4. Marin Bougeret and Ignasi Sau. How much does a treedepth modulator help to obtain polynomial kernels beyond sparse graphs? Algorithmica, 81(10):4043-4068, 2019. URL: http://dx.doi.org/10.1007/s00453-018-0468-8.
  5. A. Brandstädt, V. Le, and J. Spinrad. Graph Classes: A Survey. Society for Industrial and Applied Mathematics, 1999. URL: http://dx.doi.org/10.1137/1.9780898719796.
  6. Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, Shev Mac, and Frances A. Rosamond. The undirected feedback vertex set problem has a poly(k) kernel. In Hans L. Bodlaender and Michael A. Langston, editors, Proceedings of the 2nd Second International Workshop on Parameterized and Exact Computation, IWPEC 2006, volume 4169 of Lecture Notes in Computer Science, pages 192-202. Springer, 2006. URL: http://dx.doi.org/10.1007/11847250_18.
  7. Yixin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye. A polynomial kernel for diamond-free editing. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, Proceedings of the 26th Annual European Symposium on Algorithms, ESA 2018, volume 112 of LIPIcs, pages 10:1-10:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. URL: http://dx.doi.org/10.4230/LIPIcs.ESA.2018.10.
  8. Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect graph theorem. Ann. Math. (2), 164(1):51-229, 2006. URL: http://dx.doi.org/10.4007/annals.2006.164.51.
  9. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. Google Scholar
  10. Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, Erik Jan van Leeuwen, and Marcin Wrochna. Polynomial kernelization for removing induced claws and diamonds. Theory Comput. Syst., 60(4):615-636, 2017. URL: http://dx.doi.org/10.1007/s00224-016-9689-x.
  11. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. URL: http://dx.doi.org/10.1007/978-1-4471-5559-1.
  12. Michael R. Fellows, Bart M. P. Jansen, and Frances A. Rosamond. Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. Eur. J. Comb., 34(3):541-566, 2013. URL: http://dx.doi.org/10.1016/j.ejc.2012.04.008.
  13. Fedor V. Fomin, Bart M.P. Jansen, and Michał Pilipczuk. Preprocessing subgraph and minor problems: When does a small vertex cover help? Journal of Computer and System Sciences, 80(2):468-495, 2014. URL: http://dx.doi.org/10.1016/j.jcss.2013.09.004.
  14. Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar ℱ-deletion: Approximation, kernelization and optimal FPT algorithms. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, pages 470-479. IEEE Computer Society, 2012. URL: http://dx.doi.org/10.1109/FOCS.2012.62.
  15. Archontia C. Giannopoulou, Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. Uniform kernelization complexity of hitting forbidden minors. ACM Trans. Algorithms, 13(3):35:1-35:35, 2017. URL: http://dx.doi.org/10.1145/3029051.
  16. Pinar Heggernes, Pim Van 't Hof, Bart M. P. Jansen, Stefan Kratsch, and Yngve Villanger. Parameterized complexity of vertex deletion into perfect graph classes. Theor. Comput. Sci., 511:172-180, 2013. URL: http://dx.doi.org/10.1016/j.tcs.2012.03.013.
  17. Yoichi Iwata. Linear-time kernelization for feedback vertex set. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, Proceedings of the 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, volume 80 of LIPIcs, pages 68:1-68:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. URL: http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.68.
  18. Bart M. P. Jansen and Stefan Kratsch. Data reduction for graph coloring problems. Inf. Comput., 231:70-88, 2013. URL: http://dx.doi.org/10.1016/j.ic.2013.08.005.
  19. Bart M. P. Jansen and Astrid Pieterse. Optimal data reduction for graph coloring using low-degree polynomials. Algorithmica, 81(10):3865-3889, 2019. URL: http://dx.doi.org/10.1007/s00453-019-00578-5.
  20. Bart M. P. Jansen and Marcin Pilipczuk. Approximation and kernelization for chordal vertex deletion. SIAM J. Discrete Math., 32(3):2258-2301, 2018. URL: http://dx.doi.org/10.1137/17M112035X.
  21. Bart M.P. Jansen and Jari J.H. de Kroon. Preprocessing vertex-deletion problems: Characterizing graph properties by low-rank adjacencies. CoRR, abs/2004.08818, 2020. URL: http://arxiv.org/abs/2004.08818.
  22. Ekkehard Köhler. Graphs without asteroidal triples. PhD thesis, TU Berlin, 1999. Google Scholar
  23. Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized polynomial kernel for odd cycle transversal. ACM Trans. Algorithms, 10(4):20:1-20:15, 2014. URL: http://dx.doi.org/10.1145/2635810.
  24. John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences, 20(2):219-230, 1980. URL: http://dx.doi.org/10.1016/0022-0000(80)90060-4.
  25. Daniel Lokshtanov. Wheel-free deletion is W[2]-hard. In Martin Grohe and Rolf Niedermeier, editors, Proceedings of the Third International Workshop on Parameterized and Exact Computation, IWPEC 2008, volume 5018 of Lecture Notes in Computer Science, pages 141-147. Springer, 2008. URL: http://dx.doi.org/10.1007/978-3-540-79723-4_14.
  26. Johannes Uhlmann and Mathias Weller. Two-layer planarization parameterized by feedback edge set. Theor. Comput. Sci., 494:99-111, 2013. URL: http://dx.doi.org/10.1016/j.tcs.2013.01.029.
  27. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, 2019. URL: http://dx.doi.org/10.1017/9781107415157.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail